Reg. No. \square

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023
 Third Semester

AD18201 - DIGITAL LOGIC DESIGN
 (Regulation 2018/2018A)

TIME: 3 HOURS

MAX. MARKS: 100

COURSE	statement	${ }_{\text {RBT }}$
OUTCOMES		EV
CO 1	Perform arithmetic operations in any number system \& to simplify the Boolean expression using $\mathrm{K}-\mathrm{Map}$ and Tabulation techniques	2
CO 2	Use Boolean Simplification techniques to design a combinational hardware circuit \& Design and analysis of a given digital	3
CO 3	Design and analysis of a given digital Sequential hardware circuit	4
CO 4	Design and analysis of a given digital asynchronous sequential circuits	4
CO 5	Design using PLD	4

PART- A (10 x $2=20$ Marks)
(Answer all Questions)

(OR)
(b) Simplify using Quine Mc clusky Method
(14) 14 $F(A, B, C, D)=(0,2,3,5,7,9,11,12)+d(1,4,10)$
12. (a) Design a decimal adder circuit.
(14) 23
(OR)
(b) Design a multiplexer circuit for the boolean function
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=(1,3,4,11,12,13,14,15)$
13. (a) Explain in detail about universal shift register
(OR)
(b) With a neat diagram explain the working of johnson counter
14. (a) Discuss in detail about the various types of hazards
(OR)
(b) Design a gated latch circuit with two inputs G (gate) and D (data), and one output Q. Binary information present at the D input is transferred to the Q output when $\mathrm{G}=1$.The Q output will follow the D input as long as $\mathrm{G}=1$. When G goes to 0 ,the information that was present at the D input at the time the transition occurred is retained at the Q output.
15. (a) Using ROM, implement a combinational circuit which accepts a 3 bit number and generates an output binary number equal to the square of the input number.

(OR)

(b) Discuss in detail about the various error detection and correcting codes.

PART- C ($1 \times 10=10$ Marks)
(Q.No. 16 is compulsory)
16. Design and implement a BCD to Excess3 code convertor circuit
(14) 3
(14) 43
(14) 4
(14) 5
(14) 53

Marks CO | RBT |
| :---: |
| |
| |
| LEVEL |

(10) 25

