Reg. No.							

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023

Third Semester

AD18201 – DIGITAL LOGIC DESIGN

(Regulation 2018/2018A)

TIME: 3 HOURS		HOURS	MAX. MAF	RKS:	100
	JRSE OMES	STATEMENT			RBT LEVEL
CO 1		Perform arithmetic operations in any number system & to simple expression using K –Map and Tabulation techniques	olify the Boo	olean	2
CO 2	2	Use Boolean Simplification techniques to design a combinational h Design and analysis of a given digital	ardware circu	ıit &	3
CO ₃		Design and analysis of a given digital Sequential hardware circuit			4
	CO 4 Design and analysis of a given digital asynchronous sequential circuits		3		4
CO 5	,	Design using PLD			4
		PART- A $(10 \times 2 = 20 \text{ Marks})$			
		(Answer all Questions)			
				CO	RBT LEVEL
1.	Conv	vert (0.6875) to binary		1	2
2.	Drav	the truth table of Ex-OR gate		1	2
3. Draw the circuit of full adder				2	2
4.	4. What is multiplexing				2
5.	5. Compare latches and flip flops				3
6.	6. Compare Sequential and combinational circuit				3
7.	7. What is flow table				2
8.	8. Define critical races 4				2
9.	9. List the different types of ROM				2
10.	Drav	the structure of a memory cell		5	2
		PART- B (5 x $14 = 70 \text{ Marks}$)			
			Marks	CO	RBT
					LEVEL
11.	(a)	Implement the following using only NAND gates	(14)	1	4
		F(a,b,c,d,) = Pi (0,2.5.8.9.13)			
		(OR)			
	(b)	Simplify using Quine Mc clusky Method	(14)	1	4
		F(A,B,C,D) = (0,2,3,5,7,9,11,12) + d(1,4,10)			

12. (a)	Design a decimal adder circuit.	(14)	2	3
	(OR)			
(b)	Design a multiplexer circuit for the boolean function	(14)	2	3
	F(A,B,C,D) = (1,3,4,11,12,13,14,15)			
13. (a)	Explain in detail about universal shift register	(14)	3	4
	(OR)			
(b)	With a neat diagram explain the working of johnson counter	(14)	3	4
14. (a)	Discuss in detail about the various types of hazards	(14)	4	3
()	(OR)	()		
(b)	Design a gated latch circuit with two inputs G (gate) and D (data), and one output Q . Binary information present at the D input is transferred to the Q	(14)	4	3
	output when G=1.The Q output will follow the D input as long as G=1.			
	When G goes to 0,the information that was present at the D input at the			
	time the transition occurred is retained at the Q output.			
15. (a)	Using ROM, implement a combinational circuit which accepts a 3 bit number and generates an output binary number equal to the square of the	(14)	5	3
	input number.			
	(OR)			
(b)	Discuss in detail about the various error detection and correcting codes.	(14)	5	3
	$\frac{\text{PART-C (1 x 10 = 10 Marks)}}{\text{(Q.No.16 is compulsory)}}$		60	DDT
		Marks	CO	RBT LEVEI
16	Design and implement a BCD to Excess3 code convertor circuit	(10)	2	5