Q. Code: 579347

Reg. No.

B.E./ B.TECH. DEGREE EXAMINATIONS, MAY 2023

Second-Semester
AD18202 - Data Structures and Algorithm Analysis
(Artificial Intelligence and Data Science)
(Regulation2018A)

TIME: 3 HOURS

COURSE
OUTCOMES
statement
MAX. MARKS: 100

CO 1 To be Familiar with the algorithm analysis techniques and orders of growth.
RBT

CO 2 To be Familiar with the linear data structures and its applications.
CO 3 To be Familiar with the tree data structures, hashing techniques and priority queues.
CO 4 To Understand graph algorithms and its applications.
CO 5 To Understand the various classes of algorithm design techniques.

PART- A(10x2=20Marks)
 (Answer all Questions)

1. Define divide and Conquer strategy.
. List out different asymptotic notations.
2. Differentiate between doubly linked list and circular linked list.
3. Convert infix expression $2 *(4+3)-5$ to postfix expression.
4. Define binary heap.
5. Write the balance factor for each node in the given tree.

6. Give any 2 topological sorting for the given graph.

7. Draw the minimum spanning tree for the following graph.

8. State n-queens problem.
9. Define optimal binary search tree.

52

PART- B (5x 14=70Marks)

11. (a) (i) Write the pseudo code for Quick sort. Perform quick sort for the (9) 13 following numbers. $25,12,54,48,32,67,19,6,39,2$.
(ii) Write a short notes on solving recurrences.
(b) (i) Write the pseudo code for Merge sort. Perform Merge sort for the following numbers. $12,31,25,8,32,17,42,40,29,3$.
(ii) Write a short notes on analysis of recursive algorithms.
(i) Build stack St[] using Linked List mechanism and show push(), pop () , peek () ADT for the stack with node consisting key elements : $\mathbf{S t}[]=\{$ $20,30,40\}$
(ii) Draw the stack structure in each case when the following operations are performed on an empty stack. (a) Add A, B, C, D, E, F (b) Delete two letters (c) Add G (d) Add H (e) Delete four letters (f) Add I

(OR)

(b)
(i) Write a program to show enqueue(), dequeue() for a linear queue of 10 input values.
(ii) Convert the expression given below into its corresponding postfix expression and then evaluate it. Also write a program to evaluate a postfix expression. $\mathbf{1 0}+((\mathbf{7} \mathbf{- 5})+\mathbf{1 0}) / \mathbf{2}$
13. (a) Consider the empty binary search tree. Now do the following operations Insert 11, 22, 33, 44, 55, 66, and 77 in the tree.
(6) 23
(8) 2
(6) 23

Find the result of in-order, pre-order, and post-order traversals. Show the deletion of the root node and 55 .

(OR)

(b) Define hashing. Explain in detail about the different types of hashing (14) 3 techniques with suitable example.

Explain in detail about Breadth First Search and Depth First Search. Write
(14) 4 the BFS \& DFS traversal for the following graph.

(OR)
(b) Explain in detail about kruskal's algorithm with a proper pseudocode. Solve the following graph using kruskal's algorithm.

15. (a) Write the algorithm for assignment problem. Solve the following assignment (14) 5 problem.

	Job 1		Job 2	Job 3
Job 4				
	9	2	7	8
	B	6	4	3
	7			
C	5	8	1	8
D	7	6	9	4

(b) Write an algorithm for Huffman code. Find an optimal Huffman Code for the following set of frequencies: a: 50 b: 25 c: 15 d: 40 e: 75

PART- C(1x 10=10Marks)

(Q.No. 16 is compulsory)
(14) 5 4
16. Write the pseudocode for the prim's algorithm. Find a minimum spanning tree
for the given graph by considering A as a starting node using Prim's algorithm.

