				Q. Code: 579347					
Reg. No.									

MAX. MARKS: 100

B.E./ B.TECH. DEGREE EXAMINATIONS, MAY 2023

Second-Semester

AD18202 – Data Structures and Algorithm Analysis

(Artificial Intelligence and Data Science)

(Regulation2018A)

COURSE OUTCOMES	STATEMENT	RBT LEVEI
CO 1	To be Familiar with the algorithm analysis techniques and orders of growth.	3
CO 2	To be Familiar with the linear data structures and its applications.	3
CO3	To be Familiar with the tree data structures, hashing techniques and priority queues.	3
CO 4	To Understand graph algorithms and its applications.	4
CO 5	To Understand the various classes of algorithm design techniques.	4

PART- A(10x2=20Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Define divide and Conquer strategy.	1	2
2.	List out different asymptotic notations.	1	2
3.	Differentiate between doubly linked list and circular linked list.	2	2
4.	Convert infix expression $2 * (4+3) - 5$ to postfix expression.	2	3
5.	Define binary heap.	3	2
6.	Write the balance factor for each node in the given tree.	3	2

7. Give any 2 topological sorting for the given graph.

TIME: 3 HOURS

Page 1 of 4

Draw the minimum spanning tree for the following graph.

Q. Code: 579347
4 2

9. State n-queens problem.
10. Define optimal binary search tree.
5
2
5
2

PART- B (5x 14=70Marks)

RBT

LEVEL

Marks

2

11. (a)	(i)	Write the pseudo code for Quick sort. Perform quick sort for the	(9)	1	3
		following numbers.25,12,54,48,32,67,19,6,39,2.			
	(ii)	Write a short notes on solving recurrences.	(5)	1	2

(b) (i) Write the pseudo code for Merge sort. Perform Merge sort for the (9) 1 following numbers. 12,31,25,8,32,17,42,40,29,3.

(OR)

(ii) Write a short notes on analysis of recursive algorithms. (5) 1

12. (a) (i) Build stack St[] using Linked List mechanism and show push(), pop ()
, peek () ADT for the stack with node consisting key elements: St[]={
20, 30, 40}

(ii) Draw the stack structure in each case when the following operations are performed on an empty stack. (a) Add A, B, C, D, E, F (b) Delete two letters (c) Add G (d) Add H (e) Delete four letters (f) Add I

(OR)

b) (i) Write a program to show enqueue(), dequeue() for a linear queue of (8) 2
10 input values.

(ii) Convert the expression given below into its corresponding postfix expression and then evaluate it. Also write a program to evaluate a postfix expression. 10 + ((7-5) + 10)/2

3. (a) Consider the empty binary search tree. Now do the following operations: (14) 3

Insert 11, 22, 33, 44, 55, 66, and 77 in the tree.

Q. Code: 579347

Find the result of in-order, pre-order, and post-order traversals. Show the deletion of the root node and 55.

(OR)

- (b) Define hashing. Explain in detail about the different types of hashing (14) 3 techniques with suitable example.
- 14. (a) Explain in detail about Breadth First Search and Depth First Search. Write (14) 4 3 the BFS & DFS traversal for the following graph.

(b) Explain in detail about kruskal's algorithm with a proper pseudocode. Solve (14) 4 the following graph using kruskal's algorithm.

15. (a) Write the algorithm for assignment problem. Solve the following assignment (14) 5 problem.

	Job 1	Job 2	Job 3	Job 4
Α	9	2	7	8
В	6	4	3	7
c	5	8	1	8
D	7	6	9	4

Page 3 of 4

Q. Code: 579347

Marks CO

(OR)

(b) Write an algorithm for Huffman code. Find an optimal Huffman Code for the (14) 5 following set of frequencies: a: 50 b: 25 c: 15 d: 40 e: 75

PART- C(1x 10=10Marks)

(Q.No.16 is compulsory)

16.	Write the pseudocode for the prim's algorithm. Find a minimum spanning tree	(10)	4	5
	for the given graph by considering A as a starting node using Prim's algorithm.			
