										Q. (Q. Code:757833			
	Reg. No.													
	B.E. / B.TECH. DEGREE	EXA	MIN	AT	ION	NS.	M	V	202	3				
	Third	Seme	ster		101	10,				0				
	AD18302 – INTELLIGENT DAT	ABAS	SE N	AA	NA(GEN	ME	NT	SY	STI	EMS	5		
	(Regula	ation 2	(018))										
TIN	TIME: 3 HOURS MAX.				X . I	. MARKS: 100								
CO	1 To learn the fundamentals of data models an diagram	d to co	ncep	tuali	ze a	nd d	epic	t a c	latał	base	syste	em us	ing ER	
CO	2 To make a study of SQL and relational datab	ase de	sign											
CO	3 To learn about the internal storage structures using different file and indexing techniques which will help in physical DB design.							ch will						
CO	 4 To know the fundamental concepts of transaction processing- concurrency control techniques and recovery procedure 							es and						
COS	5 To have an introductory knowledge about the	e Stora	ge ar	nd Q	uery	pro	cess	ing	Tech	nniqu	les ai	nd No	SQL.	
	PART- A (10) x 2 =	20 N	Marl	ks)									
	PART- A (10 (Answer) x 2 = all Que	20 Nestion	Mar l ns)	ks)									
	PART- A (10 (Answer) x 2 = all Que	20 Nestion	Mar l ns)	ks)							со	RBT	
1.	PART- A (10 (Answer What is a data model? List the type of data model) x 2 = all Que	20 Nestion	Mar l ns)	ks)							C0	RBT LEVEL 2	
1.	PART- A (10 (Answer What is a data model? List the type of data model? Differentiate between Dynamic SOL and Stati) x 2 = all Que odel.	20 Nestion	Marl ns)	ks)							co 1 1	RBT LEVEL 2 4	
1. 2. 3	PART- A (10 (Answer What is a data model? List the type of data model? Differentiate between Dynamic SQL and State Discuss about Transitive Functional dependent) x 2 = all Que odel. ic SQL	20 Nestion	Mar l ns)	ks)							CO 1 1 2	RBT LEVEL 2 4 2	
1. 2. 3.	PART- A (10 (Answer What is a data model? List the type of data mo Differentiate between Dynamic SQL and State Discuss about Transitive Functional dependent Justify why 3.5 Normal Form is the Strongest) x 2 = all Qua odel. ic SQL icy.	• 20 N estion 	Mar lns)	ks)							CO 1 1 2 2	RBT LEVEL 2 4 2 4	
1. 2. 3. 4.	PART- A (10 (Answer What is a data model? List the type of data model? Differentiate between Dynamic SQL and State Discuss about Transitive Functional dependent Justify why 3.5 Normal Form is the Strongest List down the various phases of validation has) x 2 = all Que odel. ic SQL icy. Norma	20 Nestion	viari ns) rm?	ks)							CO 1 1 2 2 3	RBT LEVEL 2 4 2 4 2 4	
1. 2. 3. 4. 5.	PART- A (10 (Answer What is a data model? List the type of data model? Differentiate between Dynamic SQL and State Discuss about Transitive Functional dependent Justify why 3.5 Normal Form is the Strongest List down the various phases of validation bas	x 2 = all Que odel. ic SQL icy. Norma	20 Nestion	vIarl ns) rm? ls.	ks)							CO 1 1 2 2 3	RBT LEVEL 2 4 2 4 1	
1. 2. 3. 4. 5. 6.	PART- A (10 (Answer What is a data model? List the type of data model Differentiate between Dynamic SQL and State Discuss about Transitive Functional dependen Justify why 3.5 Normal Form is the Strongest List down the various phases of validation bas List the properties of ACID.) x 2 = all Que odel. ic SQL icy. Norma	al Fo	vIarl ns) rm? ls.	ks)							CO 1 1 2 3 3	RBT LEVEL 2 4 2 4 1 2 2	
1. 2. 3. 4. 5. 6. 7.	PART- A (10 (Answer What is a data model? List the type of data model Differentiate between Dynamic SQL and State Discuss about Transitive Functional dependen Justify why 3.5 Normal Form is the Strongest List down the various phases of validation bas List the properties of ACID. Exemplify cascaded rollback mechanism.) x 2 = all Qua odel. ic SQL icy. Norma sed pro	20 N estion	vlari ns) rm? ls.	ks)							CO 1 1 2 3 3 4	RBT LEVEL 2 4 2 4 1 2 2 2	
1. 2. 3. 4. 5. 6. 7. 8.	PART- A (10 (Answer What is a data model? List the type of data model? Differentiate between Dynamic SQL and State Discuss about Transitive Functional dependent Justify why 3.5 Normal Form is the Strongest List down the various phases of validation bas List the properties of ACID. Exemplify cascaded rollback mechanism. Relate hot swapping in disk replacement.) x 2 = all Qua odel. ic SQL icy. Norma sed pro	20 N estion	vIarl ns) rm? ls.	KS)							CO 1 1 2 3 3 4 4	RBT LEVEL 2 4 2 4 1 2 2 2 3	
1. 2. 3. 4. 5. 6. 7. 8. 9.	PART- A (10 (Answer What is a data model? List the type of data model? Differentiate between Dynamic SQL and Stati Discuss about Transitive Functional dependen Justify why 3.5 Normal Form is the Strongest List down the various phases of validation bas List the properties of ACID. Exemplify cascaded rollback mechanism. Relate hot swapping in disk replacement. Write a syntax for Spatial Databases.) x 2 = all Qua odel. ic SQL icy. Norma sed pro	al Fo	vIarl ns) rm? ls.	KS)							CO 1 1 2 3 3 4 4 5	RBT LEVEL 2 4 2 4 1 2 2 3 1	

PART- B (5 x 14 = 70 Marks)

CO

1

Marks

(14)

RBT

LEVEL

2

- Detail the operations of Relational Algebra and the purpose of each with 11. (a) examples.
 - (**OR**)

Consider the following relations: **(b)** EMPLOYEE (ENO, NAME, DATE, GENDER, DATE OF JOINING, **DESIGNATION, BASIC PAY, DNO) DEPARTMENT (DNO, DNAME)** Write SQL queries to perform the following (i) List all the employees whose name ends with letter 'E' (ii) Find the maximum salary and minimum salary given to employees in each department (iii) List the record ENO, ENAME in descending order based on BASIC

(iv) List the details of employees who work for DNAME= "ADS".

PAY

Consider the scenario and draw ER Diagram for the Company database. 12. (a) The Company database keeps track of company's employee, dept and projects. We store Employee's ID, name, address, salary, gender, date of Birth and Age. An employee is assigned to one dept, but may work on several projects which are not necessarily controlled by the same dept. A particular employee manages the department Each dept has a unique name, unique number and several locations. The dept controls no. of projects each of which has a unique name, unique number and a single location. We want to keep track, of the dependents of each employee for Insurance purpose. We keep each dependent's first name, sex, DOB and relationship to employee.

> Note: Use all the Symbols in the ER-Diagram (**O**R)

- (b) Express the need eliminate undesirable charact explain the various Normal Forms (1st,2nd,3rd examples.
- Illustrate Lock based protocol and time stamp 13. (a) suitable diagram.

(OR

Outline the concepts of Conflict and View **(b)** conflict serializability is tested?

Q. Code:757833 (14) 1

(14) 2 3

teristics in Normalization and	(14)	2	3
d,BCNF,4th,5th) with suitable			
b based protocol in detail with	(14)	3	4
-			
R)			
v serializability and how the	(14)	3	4
	(- 1)	-	•

14. (a) Elaborate the various steps involved in Query processing. How would you (14) 4 2 estimate the cost of the query optimization?

(OR)

- (b) Interpret Hash based Indexing and Tree based Indexing mechanism in (14) 4 2 detail.
- 15. (a) Outline the active database Syntax and Semantics features with suitable (14) 5 4 example.

(OR)

(b) Examine how hierarchical data is maintained in relational databases using (14) 5 4Recursive Queries in SQL?

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory)

		Marks	CO	RBT	
				LEVEL	
16.	Explore the various levels in handling the disk failure with suitable diagram.	(10)	4	3	

Q. Code:757833