CO

Marks

(7)

(7)

CO

1

1

RBT

LEVEL 3

3

RBT

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023

Fourth Semester

AD18402 – PRINCIPLES OF ARTIFICIAL INTELLIGENCE

(Artificial Intelligence and Data Science)

(Regulation 2018/2018A)

TIME: 3	HOURS MAX. MARKS:	: 100
COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Use appropriate search algorithms for any AI problem.	3
CO 2	Make Inferencing in game playing.	3
CO 3	Represent a problem using predicate logic.	3
CO 4	Solve hard problems using problem-solving strategies with knowledge representation mechanism.	3
CO 5	Design and develop expert system for real-time applications.	4

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		LEVEL	
1.	What is meant by Artificial Intelligence in terms of rational thinking?	1	1
2.	Differentiate Blind Search and Heuristic Search.	1	2
3.	Define an inference procedure.	2	1
4.	Distinguish between most constraint variable and least constraint variable.	2	2
5.	What is Skolem constant?	3	1
6.	What do you mean by resolution and unification in AI?	3	1
7.	What does planning involve?	4	1
8.	What is Sussman's anomaly?	4	1
9.	What are the Characteristics of Expert Systems?	5	1
10.	Define Knowledge Elicitation.	5	1

PART- B (5 x 14 = 70 Marks)

11. (a)	(i)	Illustrate the characteristics of production systems.
---------	-----	---

(ii) Explain about the admissibility of A* algorithm.

1

Discuss how best first search combines the advantages of Depth First (14) **(b)** Search and Breadth First Search. Present the A* algorithm and trace it to find the most cost-effective path to reach from start state S to final state G by considering the following graph-

Explain Min-Max algorithm and Find the 12. (a) (i) the maximizing node A.

(ii) Is MinMax procedure a depth first search

(OR)

- Write the algorithm for Constraint Satis (i) **(b)** the below using it. Consider the arithm letters as shown below. Assign decimal such a way that the answer to the problem occurs more than once, it must be assign No two letters may be assigned the same ΤWΟ +TWO-----FOUR
 - (ii) Explain Means-Ends Analysis with an ex
- Explain Backward and Forward Chaining 13. (a) representation. Also mention advantages and disadvantages of both the algorithms.

(**OR**)

1

3

node	H (n)
А	12
в	4
С	7
D	S
E	8
F	2
н	4
I	9
S	13
G	0

a antimal move to be taken at	(10)	2	2
e optimal move to be taken at	(10)	4	3

n or breadth first search?	(04)	2	3	
sfaction Problems and solve netic problem represented in digits to each of the letters in m is correct. If the same letter ned the same digit each time. digit.	(10)	2	3	
ample.	(04)	2	3	
g, with example in logic	(14)	3	3	

3

- (b) How is resolution in first order predicate logic different from that of (14) 3 3 propositional performed? What is unification algorithm and why is it required?
- 14. (a)Consider the following blocks world problem(14)

Start Goal Design a plan using Goal Stack planning (STRIPS). (**OR**) Solve Sussman Anamoly Problem by applying Non-linear Planning using (14) 3 **(b)** 4 Constraint Posting. Explain with a neat diagram, the architecture of an expert system 3 15. (a) (i) (10)5 (ii) Explain in detail meta knowledge and how meta knowledge is 5 3 (4) represented in rule based expert systems? (**OR**) Explain in detail about DART, XCON expert system 3 (14) 5 **(b)**

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory)	Marks	CO	RBT LEVEL
n. Describe the operators involved in it. Consider a	(10)	1	5
· · · · · · · · · · · · · · · · · · ·			

16. Solve the given problem. Describe the operators involved in it. Consider a Water Jug Problem: You are given two jugs, a 4-gallon one and a 3-gallon one. Neither have any measuring markers on it. There is a pump that can be used to fill the jugs with water. How can you get exactly 2 gallons of water into the 4-gallon jug? Explicit Assumptions: A jug can be filled from the pump, water can be poured out of a jug onto the ground, water can be poured from one jug to another and that there are no other measuring devices available.
