											Q. (Code:	5 9	4716
		Reg. No.												
		B.E / B.TECH. DEGRE	E EX	KAMI	NA	TIC	DN,	MA	Y	2023			-	
		Th	ird Se	mester	•		,							
		AD18403 – APPLIE	ED M	[ACH	INF	L	EAF	RNI	NG	(F				
		(Artificial Intell	ligence	e and L	Data	Scie	nce)							
		(Regulation 20	18 / R	Regula	tion	201	8A)							
TIM	(E: 3 H	OURS								MA	X. I	MARK	KS:	100
CO OUT	OURSE FCOMES		STAT	FEMENT]	RBT LEVEL
CO	CO 1 Develop an appreciation for what is involved in learning models from real world data.								2					
CO	Use parametric methods to obtain	AI ba	ased sc	olutio	on.								3	
CO 3 Implement machine learning solutions to clustering problems.							3							
CO	CO 4 Use discriminative models to evaluate data.								3					
CO 5 Apply the decision tree and mixture of experts algorithms to real-world problem					olems.		3							
		PART- A	(10 x	2 = 20	Ma	rks)								
		(Answ	er all	Questi	ons)									
					,							0	20	RBT LEVEL
1.	What is	called machine learning?											1	1
2.]	Define losses and risks.				1	2								
3.	What is the purpose of the maximum likelihood Estimation? 2						1							
4.]	Differentiate between bias and variance. 2						2	2						
5.]	Differentiate between single and complete linkage in hierarchical clustering. 3						3	1						
6 .	What do you mean by dendrogram?3						2							
7.]	Differentiate between MP-Neuron and perceptron. 4						1							
8.]	Define t	he term hyperplane in SVM.											4	2
9.]	Define t	he term bagging in random forest.											5	1
10. ¹	What is	the need of pruning process in deci	sion ti	ree?									5	2

PART- B (5 x 14 = 70 Marks)

Marks

CO

RBT LEVEL

4

- 11. (a) Suppose we have a dataset of weather conditions and corresponding target (14) 1 variable "Play". So, using this dataset we need to decide that whether we should play or not on a particular day according to the weather conditions. So, to solve this problem, we need to follow the below steps:
 - i. Convert the given dataset into frequency tables.

- ii. Generate Likelihood table by finding the probabilities of given features.
- iii. Now, use Bayes theorem to calculate the posterior probability.

Problem: If the weather is sunny, then the Player should play or not? SI.

SI.		
No	Outlook	Play
1	Rainy	Yes
2	Sunny	Yes
3	Overcast	Yes
4	Overcast	Yes
5	Sunny	No
6	Rainy	Yes
7	Sunny	Yes

(OR)

- **(b)** Ex brie
- 12. (a) Wh Bay

- **(b)** Dis Giv
- 13. (a) Clu thre A1
 - (b) Con

plain about types of learning in machine learning. Consider a case study to ef about the suitability of learning with examples.						1	4
nat ye:	is called bayes sian Method.	estimator? How to e	stimate the para	meters using	(14)	2	4
•		(OR)				
scu ve	ass the importance an example.	(14)	2	4			
ist ee	er the following e clusters: 10 $A2(2,5)$ $A2(3,5)$	ight points (with (x, y)	y) representing lo	cations) into 2 $A8(4, 0)$	(14)	3	3
(2	, 10), A2(2, 5), A3($(\delta, 4), A4(5, \delta), A5(7, 3)$	5), A0(0, 4), A/(1	, 2), A8(4, 9)			
mr	ute the linear disc	(OR riminant projection for) the following dat	aset	(14)	3	3
ŀ	Curvature	Curvature Diamator Quality					
	Curvature	Diameter	Control Result				
	2.95	6.63	Passed				
	2.53	7.79	Passed				
	3.57	5.65	Passed				
	3.16	5.47	Passed				
	2.58	4.46	Not Passed				
	2.16	6.22	Not Passed				
	3.27	3.52	Not Passed				
pla	in the concepts	of Logistic regression	n and back-prop	agation with	(14)	4	4

14. (a) Exp suitable example.

(OR)

(b) For the given data set compute, the expected outcome of a perceptron for the (14) 4 given conditions i. x1=x2=x4=1 and threshold >=1.5

ii. x1=x3=x5=1 and threshold >=1.5

Outlook	Play					
Overcast	Yes					
Rainy	No					
Sunny	No					
Sunny	Yes					
Rainy	No					
Overcast	Yes					
Overcast	Yes					

4

Q. Code: 594716

Criteria	Input	Weight
Artists is Good	x1 = 0 or 1	w1 = 0.7
Weather is Good	$x^2 = 0 \text{ or } 1$	w2 = 0.6
Friend will Come	x3 = 0 or 1	w3 = 0.5
Food is Served	x4 = 0 or 1	w4 = 0.3
Alcohol is Served	x5 = 0 or 1	w5 = 0.4

15. (a) Consider the given dataset. Construct the decision tree and generate the rules (14) 5 4 from that.

Age	Income	Student	Credit	Buys
			Rating	Product
Young	High	No	Fair	No
Young	High	No	Good	No
Middle	High	No	Fair	Yes
Old	Medium	No	Fair	Yes
Old	Medium	No	Fair	Yes
Old	Low	Yes	Good	No
Middle	Low	Yes	Good	Yes
Young	Medium	No	Fair	Yes
Young	Low	Yes	Fair	Yes
Old	Medium	Yes	Fair	Yes
Young	Medium	Yes	Fair	Yes
Middle	Medium	No	Good	Yes
Middle	High	Yes	Fair	Yes
Old	Medium	No	Good	No

(OR)

(b) How random forest is different from decision tree. Justify the answer with an (14) 5 4 example.

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory)

Marks CO RBT

LEVEL

16. Differentiate between single layer perceptron and multilayer perceptron. (10) 4 5Discuss the merits and demerits also.