
B.E / B.TECH. DEGREE EXAMINATION, MAY 2023 Fifth Semester

AD18502 - DIGITAL SIGNAL PROCESSING FOR DATA SCIENCE

(Artificial Intelligence and Data Science)

TIME: 3 HOURS

(Regulation 2018)

CO 1 Use of signal modelling.
CO 2 Know various signal transformations.
CO 3 Appreciate necessity of various probability distributions.
CO 4 Design models that can process audio signals.
CO 5 Use existing architectures and create their own architectures for computer vision.

PART- A ($10 \times 2=20$ Marks $)$
 (Answer all Questions)

1. Define any two mathematical operations performed on a continuous - time signal.
$1 \quad 1$
2. Let $x(t)=\cos \left(\omega_{x}\left(t+\tau_{x}\right)+\theta_{x}\right)$. Determine the frequency in hertz and the period $\mathrm{x}(\mathrm{t})$ for the $\omega_{x}=3 \pi / 4, \tau_{x}=1 / 2, \theta_{x}=\pi / 4$
3. Determine the z transform of the $\left(\frac{1}{3}\right)^{n} u(n)$ and sketch the pole - zero plots and indicate the ROC on your sketch
4. Write down the relationship between z transform and discrete time fourier transform $\mathbf{2} \mathbf{2}$
5. Define the term binomial distribution. $\quad 3 \quad 1$
6. A basketball player can shoot a ball into the basket with a probability of 0.6 . What is the probability that he misses the shot?
7. Mention the advantages and disadvantages of Large Vocabulary Continuous Speech Recognition (LVCSR).

42
8. Define the term Autocorrelation.
9. Name the techniques involved in object detection and tracking.
10. Define the Convolutional Neural Networks (CNN).

PART- B (5 x $14=70$ Marks)

11.(a) (i) Find the convolution of the sequences

$$
x_{1}(n)=x_{2}(n)=\{1,1,1\}
$$

(ii) Determine whether the given signal is Energy, Power or neither

$$
x(t)=e^{-3 t} \cdot u(t)
$$

(OR)

(b) (i) Determine whether the following systems are: (1) Memory or (7) $1 \quad 4$ Memoryless (2) Time-Invariant, (3) Linear or Non-Linear, (4) Causal or Non-Causal, (5) Stable or Unstable system.
(i) $y(t)=x(t) \cos \omega_{c} t$
(ii) $y(n)=x(-n+2)$
(ii) Explain in detail the process of converting a digital signal to analog signals. Mention some types of converters that are available to make this conversion process.
12. (a) (i) Find the Z transform of the signal

$$
x(n)=7(1 / 3)^{n} u(n)-6(1 / 2)^{n} u(n)
$$

(ii) Find the z transform and associated ROC

$$
x(n)=\left[r^{n} \cos \omega_{o} n\right] u(n)
$$

(OR)
(b) (i) The impulse response of an LTI system is $h(n)=\{1,2,2,1\}$. Find the response of the system for the input $x(n)=\{1,2,3,4\}$.
(ii) Determine the impulse response $h(n)$ for the system described by the difference equation

$$
y(n)-4 y(n-1)+4 y(n-2)=x(n-1)
$$

13. (a) Consider two variables x and y with joint distribution $p(x, y)$. Prove the (14) 3 following results. $E(x)=E_{y}\left[E_{x}(x / y)\right]$

$$
\operatorname{var}(x)=E_{y}\left[\operatorname{Var}_{x}(x / y)\right]+\operatorname{var}_{y}\left[E_{x}(x / y)\right]
$$ assignments for the set of discrete indicator variables $r_{n k}$, and that for each such assignment there is a unique optimum for the $\left\{\mu_{k}\right\}$, the K-means algorithm must converge after a finite number of iterations.

14. (a) What is the need for feature extraction techniques? Explain in detail about
(a) Mel-Frequency Cepstral Coefficient (MFCC)
(b) Discrete Wavelet Transform

(OR)

(b) (i) How audio signals are classified and explain in detail about the k - \quad (7) $\mathbf{4} \quad \mathbf{4}$ nearest neighbors ($\mathrm{k}-\mathrm{NN}$), decision tree and speech classification.
(ii) How support vector machine can be used for classification as a (7) $4 \quad 4$ supervised machine learning algorithm.
15. (a) Explain in detail about the process involved in segmenting and synthesis of an image.

(OR)

(b) Illustrate in detail about the operation and pooling process of CNN.

PART- C ($\mathbf{1 \times 1 0}=\mathbf{1 0}$ Marks)

(Q.No. 16 is compulsory)
16. The weight in grams of beans in a tin is normally distributed with mean μ and \quad (10) $\quad 3 \quad 5$ standard deviation 7.8 . Given that 10% tins contains less than 200 g , find
(a) the value of μ
(b) the percentage of tins that contain more than 225 g of beans
the machine settings are adjusted so that the weight in grams, of beans in a tin is normally distributed with mean 205 and standard deviation σ.

