			7272			
	Reg. No.					PART- B (5 x 14 =
TI	B.E / B.TECH. DEGREE EXAMINATION, MAY 2023 Fifth Semester AD18502 – DIGITAL SIGNAL PROCESSING FOR DATA SCIENCE (Artificial Intelligence and Data Science) (Regulation 2018) TIME: 3 HOURS MAX. MAR		100	11.(a)	(i) (ii)	Find the convolution of the sequences $x_1(n) = x_2(n) = \{1, 2\}$ Determine whether the given signal is End $x(t) = e^{-3t}$ (OR)
C0 C0 C0 C0 C0	 Know various signal transformations. Appreciate necessity of various probability distributions. Design models that can process audio signals. 			(b)	(i)	Determine whether the following syst Memoryless (2) Time-Invariant, (3) Linea or Non-Causal, (5) Stable or Unstable syst (i) $y(t) = x(t)cos\omega_c t$ (ii) $y(n) = x(-n+2)$
	PART- A (10 x 2 = 20 Marks) (Answer all Questions)	СО	RBT LEVEL		(ii)	Explain in detail the process of convertin signals. Mention some types of converter this conversion process.
1. 2. 3.	Define any two mathematical operations performed on a continuous – time signal. Let $x(t) = \cos(\omega_x(t + \tau_x) + \theta_x)$. Determine the frequency in hertz and the period x(t) for the $\omega_x = 3\pi/4$, $\tau_x = 1/2$, $\theta_x = \pi/4$ Determine the z transform of the $\left(\frac{1}{3}\right)^n u(n)$ and sketch the pole – zero plots and indicate the ROC on your sketch.	1 1 2	1 2 2	12. (a)	(i) (ii)	Find the Z transform of the signal $x(n) = 7(1/3)^n u(n) - 6$ Find the z transform and associated ROC $x(n) = [r^n cos \omega_0 n u_0]$ (OR)
4. 5. 6.	Write down the relationship between z transform and discrete time fourier transformDefine the term binomial distribution.A basketball player can shoot a ball into the basket with a probability of 0.6. What is the	2 3 3	2 1 2	(b)	(i) (ii)	The impulse response of an LTI system is response of the system for the input $x(n)$ Determine the impulse response $h(n)$ for difference equation
7. 8.	probability that he misses the shot?Mention the advantages and disadvantages of Large Vocabulary Continuous Speech Recognition (LVCSR).Define the term Autocorrelation.	4	2	13. (a)		y(n) - 4y(n - 1) + 4y(n - 1) sider two variables x and y with joint dispowing results. $E(x) = E_y[E_x(x/y)]$
9. 10.	Name the techniques involved in object detection and tracking. Define the Convolutional Neural Networks (CNN).	5 5	2 1			$var(x) = E_y[Var_x(x/y)] + va$ (OR)

2

PART- B (5 x 14 = 70 Marks)

	Marks	CO	RBT LEVEL
on of the sequences	(7)	1	4
$x_1(n) = x_2(n) = \{1, 1, 1\}$			
er the given signal is Energy, Power or neither	(7)	1	4
$x(t) = e^{-3t} . u(t)$			
(OR)			
er the following systems are: (1) Memory or	(7)	1	4
ime-Invariant, (3) Linear or Non-Linear, (4) Causal			
) Stable or Unstable system.			
$) = x(t)cos\omega_c t$			
x(-n+2) = x(-n+2)			
the process of converting a digital signal to analog	(7)	1	4
some types of converters that are available to make	(.)	•	•
ocess.			
rm of the signal	(7)	2	4
$u(n) = 7(1/3)^n u(n) - 6(1/2)^n u(n)$			
rm and associated ROC	(7)	2	4
$x(n) = [r^n cos \omega_o n] u(n)$			
(OR)			
onse of an LTI system is $h(n) = \{1, 2, 2, 1\}$. Find the	(7)	2	4
stem for the input $x(n) = \{1, 2, 3, 4\}.$			
pulse response $h(n)$ for the system described by the	(7)	2	4
n			
-4y(n-1) + 4y(n-2) = x(n-1)			
x and y with joint distribution $p(x, y)$. Prove the	(14)	3	3

 $= E_{y}[Var_{x}(x/y)] + var_{y}[E_{x}(x/y)]$

Q. Code: 914272

- (b) Show that as a consequence of there being a finite number of possible (14) 3 3 assignments for the set of discrete indicator variables r_{nk}, and that for each such assignment there is a unique optimum for the {μ_k}, the K-means algorithm must converge after a finite number of iterations.
- 14. (a) What is the need for feature extraction techniques? Explain in detail about (14) 4 4
 - (a) Mel-Frequency Cepstral Coefficient (MFCC)
 - (b) Discrete Wavelet Transform

(OR)

- (b) (i) How audio signals are classified and explain in detail about the k (7) 4 4 nearest neighbors (k NN), decision tree and speech classification.
 (ii) How support vector machine can be used for classification as a (7) 4 4 supervised machine learning algorithm.
- 15. (a) Explain in detail about the process involved in segmenting and synthesis of (14) 5 3 an image.

(OR)

(b) Illustrate in detail about the operation and pooling process of CNN. (14) 5 3

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory)

		Marks	CO	RBT
				LEVEL
16.	The weight in grams of beans in a tin is normally distributed with mean $\boldsymbol{\mu}$ and	(10)	3	5
	standard deviation 7.8. Given that 10% tins contains less than 200g, find			

(a) the value of μ

(b) the percentage of tins that contain more than 225g of beans

the machine settings are adjusted so that the weight in grams, of beans in a tin

is normally distributed with mean 205 and standard deviation σ .

Q. Code: 914272