Reg. No.
B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2023 Second Semester
AE18201 - APPLIED MECHANICS
(Automobile Engineering)
(Regulation 2018 \& 2018A)

TIME: 3 HOURS

MAX. MARKS: 100
CO 1 Explain the different principles applied to solve engineering problems dealing with force.
CO 2 Analyze the frictional forces acting on a system and examine the velocity and acceleration inducing on a body with rectilinear and curvilinear motions.
CO 3 Analyze the various belt transmission.
CO 4 Identify and examine the centroid, center of gravity, area moment of inertia and mass moment of inertia.
CO 5 Investigate the dynamic forces subjected to a rigid body.

$$
\text { PART- A (10 x } 2=20 \text { Marks })
$$

(Answer all Questions)

1 What is meant by free vector? origin of the coordinate axes is $10 \mathrm{i}+4 \mathrm{j}-3 \mathrm{k}$. Find the moment of this force about origin.
3 State coulomb's law of friction.
4 A scooter starts from rest and moves with a constant acceleration of $2.25 \mathrm{~m} / \mathrm{s}^{2}$. $\mathbf{2} \quad \mathbf{2}$ Determine its velocity, after it has travelled for 100 meters.
5 Find the necessary difference in tensions in N in the two sides of a belt drive, $\mathbf{3} \quad \mathbf{2}$ when transmitting a power of 0.120 kW at $20 \mathrm{~m} / \mathrm{sec}$.
6 Write an expression to determine the length of an open-end belt.
Distinguish between area moment of inertia and mass moment of inertia.
7 Distinguish between area moment of inertia and mass moment of inertia. 4
$\mathbf{8}$ Write an expression for area moment of inertia through the centroid of a square $\quad 4 \quad 1$ plate of side ' a '.
9 State Impulse -Momentum principle.
$\begin{array}{llll} & \text { State Impulse -Momentum principle. } & \mathbf{5} & \mathbf{1} \\ \mathbf{1 0} & \text { State different forms of energy and distinguish between kinetic energy and } & \mathbf{5} & \mathbf{2}\end{array}$ potential energy.

PART- B (5 x $14=70$ Marks

$\begin{array}{ccc}\text { Marks } & \text { CO } & \text { RBT } \\ \text { LEVEL } \\ (14) & 1 & 3\end{array}$
and is held in position by a chord A as shown in Fig.1. Find the tension in the chord and reaction at B , if there is a horizontal force $\mathrm{P}=1000 \mathrm{~N}$ acting at C.

Fig. 1.

(OR)

11(b) A rectangular plate is supported by three cables as shown in Fig.2. (14) 1 Knowing that the tension in cable $A C$ is 20 N , determine the weight of the plate.

12(a) For the block and wedge shown in Fig.3, determine the value of ' p ' required to raise the block.

Fig 3
(OR)
12(b) Two electric trains A and B leave the same station on parallel lines. The (14) $2 \quad 3$
a speed of 60 kmph ., which is maintained constant afterwards. The train B leaves 70 seconds after with a uniform acceleration of $0.6 \mathrm{~m} / \mathrm{s}^{2}$ to attain a maximum speed of 80 kmph ., which is maintained constant afterwards. When will the train B overtake the train A ?

13(a) Derive an expression to determine the ratio of belt tensions in terms of angle of contact and coefficient of friction between pulley and belt

13(b) In Fig.4, if the load is lifted by applying a horizontal force, determine T_{1}, Torque and power transmitted.

14(a) Determine the outside surface area of and volume of the storage tank shown in Fig.5. Use Pappus-Guldinus theorem. All dimensions are in ' m '

Fig. 5.

(OR)

14(b) Determine the mass moment of inertia of a bar about the line parallel to cross section and passing through centre of gravity. Assume cross section of the bar is a square with side ' a '. Mass of the bar is ' m ' and length is ' L '

15(a) Two weights 800 N and 200 N are connected by a thread and they move along a rough horizontal plane under the action of force ' P ' of 400 N applied to 800 N block as shown in Fig.6. Find the acceleration of the weights and tension in the thread.

Fig.6.

15(b) Explain the work- energy method and its application in a vehicle with an example.

PART- C (1 x $10=10$ Marks)

(Q.No. 16 is compulsory)

6 In a laboratory experiment, students hang the masses shown (Fig 7) from a beam of negligible mass. (a) Determine the reaction at the fixed support A knowing that end D of the beam does not touch support E. (b) Determine the reaction at the fixed support A knowing that the adjustable support E exerts an upward force of 6 N on the beam. (c) Determine the range of values of the force exerted on the beam by the adjustable support E for which the magnitude of the couple at A does not exceed 2.5 Nm .

Fig 7.

