											Q.	Co	de: 9	311	05
	Reg. No.														
	B.E / B.TECH. DEGRE	EE	XA	MI	NA	ГІС	DN,	MA	Y	202	.3				
Sixth Semester															
BT18020 – PLANT BIOTECHNOLOGY															
(Biotechnology)															
	(Regulation 20	18 /	Reg	ulat	ion	201	8A)								
TIME: 3 HOURS MAX. MAR									RKS	5:10	0				
C0 C0 C0 C0	 2 Interpret the chloroplast and mitochondr 3 Identify the nitrogen fixation mechanism 4 Apply the plant tissue culture technique 5 Examine different types of transgenic plant PART-A (Answ 	ial g for c ants (10 : er al	enon creati x 2 = 1 Qu	ne fi ng t 20 estic	unct rans Ma i ons)	ion. gen r ks)	ic p	ants	i						DDT
													CU	L	EVEL
1.	What is c-value paradox?												1		2
2.	. Where do you encounter a lariat structure in central dogma?										1		3		
3.	Define CMS.										2		2		
4.	Justify that mitochondrial genome exists as sub-genomic circle and reason for it.										2		3		
5.	List the sources of nitrogen for N ₂ fixation.									3		2			
6.	What are the enzymes involved in the nitrogen fixation through soil and air?									3		2			
7.	Describe the components of agroinfection.												4		2
8.	Draw the map of CaMV genome.												4		3

- **9.** Interpret the pathway targeted by glyphosate.
- 10. Outline the steps of ScFv production in plant.

PART- B (5 x 14 = 70 Marks)

5

5

3

4

			Marks	CO	RBT
					LEVEL
11. (a)	(i)	Explain the types of noncoding DNA available in the plant genome.	(10)	1	2
	(ii)	Justify that genome complexity is related to various biological	(4)	1	2
		processes.			
		(OR)			
(b)	(i)	Describe about the post translational modifications occurring in plant.	(7)	1	2
	(ii)	Illustrate the principle of gene regulation in eukaryotes.	(7)	1	2

			Q. Code: 931105				
12. (a)	(i)	Describe the reason for the existence of high number of proteins surpassing the number of genes encoded by the chloroplast genome,	(7)	2	3		
		which machinery is responsible for this?					
	(ii)	Interpret the functions of genes present in the chloroplast genome (OR)	(7)	2	3		
(b)	(i)	Explain the protein import process of mitochondria and the function of those proteins.	(7)	2	3		
	(ii)	Analyze the utilization of CMS in the empowerment of plants-based economy.	(7)	2	3		
13. (a)	Disc	cuss the relationship between rhizobia and the nitrogen fixation in plants. (OR)	(14)	3	3		
(b)	(i)	Describe about the elucidation of nif gene cluster by cloning.	(7)	3	3		
	(ii)	Elaborate the pathways involved in the secondary metabolite production.	(7)	3	3		
14. (a)	(i)	Explain the steps in the transfer of T-DNA by agrobacterium using suitable schematic diagram.	(7)	4	4		
	(ii)	Describe about types of tissue culture and their role in creating transgenic plants.	(7)	4	4		
		(OR)					
(b)	(i)	Justify that viral vectors are a good tool to introduce genes of interest to desired plant cells.	(10)	4	4		
	(ii)	Illustrate the steps involved in the particle bombardment technique.	(4)	4	4		
15. (a)	(i)	Explain the mode of action of Cry protein and creation of transgenics based on Cry protein and copy nature strategy.	(10)	5	4		
	(ii)	Describe in detail about the plant yield improvement by modification of phytochrome proteins.	(4)	5	4		
		(OR)					
(b)	(i)	Justify that plants can be used for production of high value pharmaceutical proteins.	(7)	5	4		
	(ii)	Explain the strategy used to create a herbicide resistant plant.	(7)	5	4		
		$\frac{PART-C (1 \times 10 = 10 \text{ Marks})}{(Q.No.16 \text{ is compulsory})}$	N <i>4</i> 1	66	DBT		
			IVIARKS	0	кві LEVEL		
16.	Desc produ	ribe about the transgenic plants which are engineered for fatty acid action and bioplastics.	(10)	5	5		