

1) The partial pressure of nitrogen
2) The pure component volume of ethane in $10 \mathrm{~m}^{3}$ of the gas.
3) The density of the gas mixture at standard conditions in $\mathrm{kg} / \mathrm{m}^{3}$.
4) The average molecular weight of the gas mixture.
5) The composition of the gas mixture in weight percent

(OR)

(b) (i) Find the average molecular weight of air at NTP conditions.
(4) $1 \quad 4$
(ii) What is the weight of iron and water required for the production of
(10) 1 100 Kg of hydrogen?
$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$
Data: Mol. Wt of Iron: $55.845 \mathrm{~g} / \mathrm{mol}$.
12. (a) An evaporator is fed with $15000 \mathrm{~kg} / \mathrm{h}$ of a solution containing $10 \% \mathrm{NaCl}$, (14) $\mathbf{2}$ $15 \% \mathrm{NaOH}$ and rest water. In the operation, water is evaporated and NaCl is precipitated as crystals. The thick liquor leaving the evaporator contains 45% $\mathrm{NaOH}, 2 \% \mathrm{NaCl}$ and rest water. Calculate a) Kg / h evaporated, b) Kg / h salt precipitated, c) Kg / h thick liquor obtained.
(OR)
(b) The waste acid from a nitrating process containing $20 \% \mathrm{HNO}_{3}, 55 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and $25 \% \mathrm{H}_{2} \mathrm{O}$ by weight is to be concentrated by addition of concentrated sulphuric acid containing $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and concentrated nitric acid containing $90 \% \mathrm{HNO}_{3}$, to get desired mixed acid containing $26 \% \mathrm{HNO}_{3}$ and 60% $\mathrm{H}_{2} \mathrm{SO}_{4}$. Calculate the quantities of waste and concentrated acids required for 1000 kgs of desired mixed acid.
13. (a) A gas mixture contains 0.274 kmol of $\mathrm{HCl}, 0.337 \mathrm{kmol}^{2} \mathrm{~N}_{2}$ and 0.089 kmol (14) $\mathbf{3} \quad 4$ of O_{2}. Calculate a) Avg. Molecular weight, b) Volume occupied by the mixture, c) partial pressure of each component at 405.3 kPa and 303 K and d) density of the gas mixture.

(OR)

(b)
1.5%, carbon monoxide 33.9%, Nitrogen 1.8%. The gas is available at 773 K and 4 bar. Find the molar volume of the mixture assuming
i) Ideal gas law and ii) Vanderwaal's equation of state.
14. (a) (i) Explain Psychrometry
(ii) The dry bulb temperature and dew point of ambient air were found to
(2) 43 be $302 \mathrm{~K}\left(29^{\circ} \mathrm{C}\right)$ and $291 \mathrm{~K}\left(18{ }^{\circ} \mathrm{C}\right)$ respectively. The barometer reads 100 kPa (750 Torr). Partial pressure of water in air $\mathrm{Pw}=2.0624 \mathrm{kPa}$.

Calculate:

1) Absolute molar humidity
2) Absolute humidity and
3)) The $\% \mathrm{RH}$, if the vapor pressure at saturation is 4.004 kPa .
(OR)
(b) A crystallizer is charged with 6400 kgs of an aqueous solution containing 29.6% anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution is cooled and 10% of the initial $\mathrm{H}_{2} \mathrm{O}$ is lost by evaporation. The crystals obtained are $\mathrm{Na}_{2} \mathrm{SO}_{4}, 10 \mathrm{H}_{2} \mathrm{O}$. If the mother liquor is found to be contain 18.3% $\mathrm{Na}_{2} \mathrm{SO} 4$, calculate the weight of mother liquor and crystals.
15. (a) (i) Write briefly about the latent heat of fusion and latent heat of vaporization.
(ii) Ethyl alcohol reacts with acetic acid to give ethyl acetate. Heat of combustion of ethyl alcohol, acetic acid and ethyl acetate are $-3,26,700 \mathrm{cal},-2,08,340 \mathrm{cal},-5,38,760 \mathrm{cal}$ respectively. Calculate the standard heat of reaction.
(OR)
(b) (i) Calculate the heat of formation of glycerol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}\right)$ at 298.15 K from
its elements using the following data:
Data: $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}} \mathrm{CO}_{2}(\mathrm{~g})=-393.51 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-285.3 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}^{\circ} \mathrm{c}^{\circ} \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{l})=-1659.10 \mathrm{~kJ} / \mathrm{mol}$
(ii) A stream of nitrogen flowing at $100 \mathrm{~mol} / \mathrm{min}$ is heated from $20^{\circ} \mathrm{C}$ to
$100{ }^{\circ} \mathrm{C}$. Calculate the heat capacity Cp for nitrogen at a constant pressure of 1 atm .
Data:
$\mathrm{Cp}\left(\mathrm{kJ} / \mathrm{mol}^{\circ} \mathrm{C}\right)=0.029+0.219 \times 10^{-5} \mathrm{~T}+0.57 \times 10^{-8} \mathrm{~T}^{2}-2.87 \times 10^{-12} \mathrm{~T}^{3}$

PART- C (1 x $10=10$ Marks)

(Q.No. 16 is compulsory)

$$
\begin{array}{llc}
\text { Marks } & \text { CO } & \text { RBT } \\
\text { LEVEL }
\end{array}
$$

16. Wet solid containing 50% water and 50% solids are to be dried to get solids with $5 \% \mathrm{H}_{2} \mathrm{O}$ by weight. Fresh air contains $0.010 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$ per kg dry air and air leaving the dryer contains 0.05 kg of $\mathrm{H}_{2} \mathrm{O}$ per kg of dry air. If 100 kg of dry air enters the dryer per kg of dry solids, calculate the fraction of air recirculated and recycle ratio.
