


### **PART- B (5 x 14 = 70 Marks)**

|         |                                                                              | Marks | CO | RBT   |
|---------|------------------------------------------------------------------------------|-------|----|-------|
|         |                                                                              |       |    | LEVEL |
| 11. (a) | Natural gas is piped from the well at 300 K and 400 kPa. The gas is found to | (14)  | 1  | 4     |
|         | contain by volume 93% methane, 4.5% ethane and the rest nitrogen.            |       |    |       |
|         | Calculate the following:                                                     |       |    |       |

- 1) The partial pressure of nitrogen
- 2) The pure component volume of ethane
- 3) The density of the gas mixture at stand
- 4) The average molecular weight of the g
- 5) The composition of the gas mixture in

(OF

- (i) Find the average molecular weight of air **(b)** 
  - (ii) What is the weight of iron and water req 100 Kg of hydrogen?  $3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2$ Data: Mol. Wt of Iron: 55.845 g/mol.
- An evaporator is fed with 15000 kg/h of a set 12. (a) 15% NaOH and rest water. In the operation, w precipitated as crystals. The thick liquor leaving NaOH, 2% NaCl and rest water. Calculate a) precipitated, c) Kg/h thick liquor obtained.
  - The waste acid from a nitrating process containing 20% HNO<sub>3</sub>, 55% H<sub>2</sub>SO<sub>4</sub> (14) 2 **(b)** and 25% H<sub>2</sub>O by weight is to be concentrated by addition of concentrated sulphuric acid containing 95% H<sub>2</sub>SO<sub>4</sub> and concentrated nitric acid containing 90% HNO<sub>3</sub>, to get desired mixed acid containing 26% HNO<sub>3</sub> and 60% H<sub>2</sub>SO<sub>4</sub>. Calculate the quantities of waste and concentrated acids required for 1000 kgs of desired mixed acid.
- 13. (a) A gas mixture contains 0.274 kmol of HCl, 0.337 kmol of N<sub>2</sub> and 0.089 kmol (14) 3 4 of O<sub>2</sub>. Calculate a) Avg. Molecular weight, b) Volume occupied by the mixture, c) partial pressure of each component at 405.3 kPa and 303K and d) density of the gas mixture.

(**OR**)

**(b)** Carbureted water gas has the following composition by volume (14) 3 4 hydrogen 35.2%, methane 14.8%, ethylene 12.8%, carbon dioxide

| e in $10 \text{ m}^3$ of the gas.      |      |   |   |
|----------------------------------------|------|---|---|
| dard conditions in kg/m <sup>3</sup> . |      |   |   |
| gas mixture.                           |      |   |   |
| n weight percent                       |      |   |   |
| R)                                     |      |   |   |
| ir at NTP conditions.                  | (4)  | 1 | 4 |
| quired for the production of           | (10) | 1 | 4 |
|                                        |      |   |   |

| solution containing 10% NaCl,   | (14) | 2 | 4 |
|---------------------------------|------|---|---|
| water is evaporated and NaCl is |      |   |   |
| ng the evaporator contains 45%  |      |   |   |
| ) Kg/h evaporated, b) Kg/h salt |      |   |   |

# (**OR**)

# Q. Code: 198559

4

4

(2)

3

3

3

3

1.5%, carbon monoxide 33.9%, Nitrogen 1.8%. The gas is available at

773 K and 4 bar. Find the molar volume of the mixture assuming

i) Ideal gas law and ii) Vanderwaal's equation of state.

(i) Explain Psychrometry. 14. (a)

> The dry bulb temperature and dew point of ambient air were found to (12)(ii) be 302 K (29 °C) and 291 K (18 °C) respectively. The barometer reads 100 kPa (750 Torr). Partial pressure of water in air Pw= 2.0624 kPa. Calculate:

- 1) Absolute molar humidity
- 2) Absolute humidity and
- 3)) The %RH, if the vapor pressure at saturation is 4.004 kPa.

### (**OR**)

- A crystallizer is charged with 6400 kgs of an aqueous solution (14) **(b)** 4 containing 29.6% anhydrous Na<sub>2</sub>SO<sub>4</sub>. The solution is cooled and 10% of the initial H<sub>2</sub>O is lost by evaporation. The crystals obtained are Na<sub>2</sub>SO<sub>4</sub>, 10H<sub>2</sub>O. If the mother liquor is found to be contain 18.3% Na<sub>2</sub>SO4, calculate the weight of mother liquor and crystals.
- 15. (a) Write briefly about the latent heat of fusion and latent heat of (4) 5 3 (i) vaporization.

(ii) Ethyl alcohol reacts with acetic acid to give ethyl acetate. Heat of (10) 5 combustion of ethyl alcohol, acetic acid and ethyl acetate are -3,26,700 cal, -2,08, 340 cal, -5,38,760 cal respectively. Calculate the standard heat of reaction.

### (**OR**)

Calculate the heat of formation of glycerol (C<sub>3</sub>H<sub>8</sub>O<sub>3</sub>) at 298.15 K from 3 (i) (7) 5 **(b)** its elements using the following data: Data:  $\Delta H^{\circ}_{f} CO_2(g) = -393.51 \text{ kJ/mol}$  $\Delta H^{\circ}_{f} H_{2}O(l) = -285.3 \text{ kJ/mol}$  $\Delta H^{\circ}c C_{3}H_{8} (l) = -1659.10 \text{ kJ/mol}$ 

(ii) A stream of nitrogen flowing at 100 mol/min is heated from 20 °C to (7) 100 °C. Calculate the heat capacity Cp for nitrogen at a constant pressure of 1 atm. Data:

# **PART-** C (1 x 10 = 10 Marks)

(Q.No.16 is compulsory)

4

Wet solid containing 50% water and 50% solid 16. with 5% H<sub>2</sub>O by weight. Fresh air contains 0. air leaving the dryer contains 0.05 kg of H<sub>2</sub>O dry air enters the dryer per kg of dry solids recirculated and recycle ratio.

# Q. Code: 198559

5 3

# Cp (kJ/mol°C) = $0.029 + 0.219 \times 10^{-5} \text{T} + 0.57 \times 10^{-8} \text{T}^2 - 2.87 \times 10^{-12} \text{T}^3$

|                                             | Marks | CO | RBT   |
|---------------------------------------------|-------|----|-------|
|                                             |       |    | LEVEL |
| ids are to be dried to get solids           | (10)  | 4  | 5     |
| .010 kg H <sub>2</sub> O per kg dry air and |       |    |       |
| per kg of dry air. If 100 kg of             |       |    |       |
| s, calculate the fraction of air            |       |    |       |