Q. Code: 882273 Reg. No.

MAX. MARKS: 100

B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2023

Third Semester **BT18304 – BIOCHEMISTRY**

Biotechnology

(Regulation 2018/2018A)

TIME: 3 HOURS

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Explain the structure of carbohydrates and their application in biological process.	2
CO 2	Summarize the structure of proteins and amino acids and their application in biological	3
	process.	
CO 3	Relate the structure of lipids and their application in biological process.	3
CO 4	Distinguish the enzymes based on their properties and examine the application in	4
	biological process.	
CO 5	Utilize the concepts of bioenergetics and their mechanism in human body.	3

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	How will you quantify reducing sugars in a biological sample?	1	2
2.	Differentiate glycolysis and gluconeogenesis.	1	2
3.	Write the biological significance of essential fatty acids.	2	2
4.	List out the important chemical properties of fats.	2	2
5.	Classify proteins based on their structure and composition.	3	2
6.	What are essential and non-essential amino acids? Give examples.	3	2
7.	Write a note on Lock and Key model of enzyme action.	4	2
8.	What are lyases? Mention their role with an example.	4	2
9.	Calculate the net ATP production in glycolysis.	5	2
10.	Point out the effects of uncouplers during oxidative phosphorylation.	5	2

PART- B (5 x 14 = 70 Marks)

		Marks	CO	RBT LEVEL
11. (a)	Identify and explain the metabolic pathway which branches from glucose- 6-phosphate into NADPH and ribose-5-phosphate and contributes to redox reactions and nucleic acid synthesis, respectively.	(14)	1	4
	(OR)			
(b)	Explain the steps involved in a metabolic pathway in which acetyl-CoA is	(14)	1	4

oxidised to form carbon dioxide and coenzymes are reduced, which generate ATP in the electron transport chain.

12. (a)	Elaborate on the steps involved in a metabolic pathway of synthesizing cholesterol from acetyl CoA.	(14)	2	3
	(\mathbf{OR})			
(b)	Describe the steps involved in mitochondrial fatty acid beta-oxidation with a schematic diagram.	(14)	2	3
13. (a)	Elaborate on the elimination of nitrogenous wastes generated by the breakdown of protein and other nitrogen-containing molecules.	(14)	3	4
	(OR)			
(b)	Discuss the biosynthetic pathway of L-threonine with a suitable flow diagram highlighting the utilization of NADPH and ATP.	(14)	3	4
14. (a)	What are Michaelis-Menten parameters? Write about their significances in enzyme catalyzed reactions. Elaborate on the different types of plots used determine these parameters.	(14)	4	3
	(OR)			
(b)	Use an equilibrium assumption to explain the kinetics of enzyme-substrate	(14)	4	3
	reactions $A \xrightarrow{\text{enzyme}} R$. What final rate form $-r_A$ in terms of [A], [E ₀], k_1 , k_2 and k_3 does the mechanism give?			
15. (a)	Comment on exergonic and endergonic processes. Classify high energy compounds involved in metabolic reactions. Explain them in detail with suitable examples.	(14)	5	3
(OR)				
(b)	Brief about the location and functions of electron transport chain with suitable diagram. Elaborate on the role of different complexes involved in the electron transport chain.	(14)	5	3
	PART. $C(1 \ge 10 = 10 \text{ Marke})$			

(Q.No.16 is compulsory)

		Marks	СО	RBT
				LEVEL
16.	Evaluate the relationship between high concentration of circulating lipids	(10)	3	5
	and cardiovascular disease. Also propose suitable treatment strategies to			
	reduce lipid levels.			
