		Q. Code: 366424													
	Reg. No.														1
	B.TECH. DEGREE E	Y A N			N M	۸V	2023]	(b)	(i)	1
			mester		1 ,	ΠΙ	2023							(ii)	1
	BT18403 – THERMODYNAN	IICS	5 FOF	R BIC)TE	CHN	OLO	OGI	STS						
	(Biote	echn	nology))									12. (a)	(i)]
	(Regul	atio	n 2018)											t
TI	ME: 3 HOURS						Ι	MAX	K. M/	ARKS	: 10)0		(ii)]
CO	1 Summarize the theoretical concepts of the technological applications and biological s		-	cs and	l how	it ap	plies	to en	ergy	conve	ersio	on in			1
CO	applications in biological systems.				-					-			(b)	At 3	30
CO	calculations.								-	-		rium		cyc	lol
CO CO	1	ing e	experin	nents,	and	analy	ze and	d inte	erpre	t fund	ame	ental		whe exp	
					-										
	PART- A (1 (Answer				S)								13. (a)	(i)]
		un	Zuestio	,115)						CO)	RBT		(ii)	
											L	EVEL			
1.	What is the significance of Mollier diagram?							_		1		1	(b)	(i)	1
2.	Estimate the coefficient of performance of a	n ide	eal Car	not er	ngine	oper	ating	betw	een a	a 1		2	(0)	(i) (ii)	1
	temperature limit of 280 K and 320 K.													(11)	1
3.	Distinguish molar volume and partial molar v	olun	ne							2		2			2
4.	State Lewis Randall rule.									2		1			1
5.	Define modified Raoult's law.									3		2			t
6.	Define fugacity and fugacity coefficient.									3		2			t
7.	What is the relation about Gibbs free energy constant?	and s	standaro	d heat	of re	actio	n & e	quili	briun	n 4		1			1 2
8.	What is extent of reaction?									4		1			
9.	What is the importance of $\Delta_R G^O$ values?									5		1	14. (a)	An	nix
). 10.	What do you mean by basal metabolic rate?									5		1		shif	t r
														The	e e

PART- B (5 x 14 = 70 Marks)

LEVEL Derive Maxwell equations and also mention the applications. 3 11. (a) (14) 1

- Derive PVT relationships for Adiabatic
- Derive Joule Thomson Coefficient for V
- Define chemical potential. Derive the temperature and pressure on chemical po
 - Explain the tangent-intercept method for properties.

(OR

00 K and 1 bar, the volumetric data for a ohexane are represented by

 $V = 109.4 \text{ x } 10^{-6} - 16.8 \text{ x } 10^{-6} \text{ x}$

re x is the mole fraction of benzene and V ressions for the partial molar volumes of b

- Explain the criterion of Phase equilibria. Explain the phase diagrams of liquid-liq (OR
- Distinguish the types of azeotropes with
 - From vapour-liquid equilibrium measured system at 318 K and 40.25 kPa it is found with a liquid containing 38.4% (mol) be benzene. The system forms an azeotrope the vapour pressures of ethanol and be respectively. Determine the composition azeotrope. Assume that van Laar equation
- ixture of 1 mol CO and 1 mol water vapo reaction at a temperature of 1100K and pressure of 1 bar.

RBT

Marks CO

 $CO(g) + H_2O(G) \rightarrow CO_2 + H_2(g)$

The equilibrium constant for the reaction is K=1. Assume that the gas mixture behaves as ideal gas. Calculate

(i) The fractional dissociation of steam.

(OR)	Q. Cou		
patic process.	(7)	1	3
for Vanderwaals equation of state.	(7)	1	3
the expressions for the effect of cal potential.	f (8)	2	3
d for determination of partial molar	(6)	2	3
(OR) for a liquid mixture of benzene and	(14)	2	3
$10^{-6}x - 2.64 \ge 10^{-6}x^2$, and V has the units of m3/mol. Find s of benzene and cyclohexane.			
iharia		7	4
ibria. d-liquid equilibrium.	(4) (10)		4 4
(OR)	(10)	U	•
with an example.	(4)	3	4
neasurements for ethanol–benzene found that the vapour in equilibrium ol) benzene contained 56.6% (mol) trope at 318 K. At this temperature, nd benzene are 22.9 and 29.6 kPa position and total pressure of the quation is applicable for the system.		3	4
vapour is undergoing the water-gas	(14)	4	4

(ii) The fractional dissociation of steam if the reactant stream is diluted with 2 mol nitrogen.

(OR)

(b)	(i)	Explain the criteria of Chemical Reaction Equilibria.	(4)	4	4			
	(ii)	Explain the effect of temperature and pressure on equilibrium constant.	(10)	3	4			
		Also derive the effect of pressure on equilibrium composition.						
15. (a)	5. (a) Explain about the Herbert model, Pirt model and Compromise model of				5			
(OR)								
(b)	(i)	Explain about the non-growth components for microbial maintenance.	(6)	3	5			
	(ii)	Classify the microbial product formation. Mention with examples.	(8)	3	5			
		PART- C (1 x 10 = 10 Marks)						
		(Q.No.16 is compulsory)						
			Marks	CO	RBT LEVEL			
16.	Wate	r (i)- hydrazine (ii) system forms an azeotrope containing 58.5% (mol)	(10)	3	LEVEL			
		azine at 393°K and 101.3 Kpa. Calculate the equilibrium vapour						
		position for a solution containing 20% (mol) hydrazine. The relative						
	-	ility of water with reference to hydrazine is 1.6 and may be assumed to						
	voiat	inty of water with reference to hydrazine is 1.0 and may be assumed to						

remain constant in the temperature range involved. The vapour pressure of

hydrazine at 393°K is 124.76 KPa.