B.E / B.TECH. DEGREE EXAMINATION, MAY 2023 Sixth Semester
 BT18601 - CHEMICAL REACTION ENGINEERING (Biotechnology)
 (Regulation 2018/2018A)

TIME: 3 HOURS

outcomes

statement

MAX. MARKS: 100 stoichiometry? the reaction influenced by pore diffusion? Data: For cube of 2 cm pellet: Effective mass diffusivity $=5 \times 10^{-5} \mathrm{~m}^{3} /(\mathrm{m}$ cat. h$) ;$ Observed reaction rate $=10^{5} \mathrm{~mol} /\left(\mathrm{h} . \mathrm{m}^{3}\right.$ cat $)$; $\mathrm{C}_{\mathrm{Ag}}=20 \mathrm{~mol} / \mathrm{m}^{3}$ (at 1 atm and $336^{\circ} \mathrm{C}$).

CO 1 Organize an experimental investigation in order to determine rate equations.
CO 2 Solve material and energy balances in order to analyse the performance of a reactor.
CO 3 Demonstrate the residence time distribution in ideal and non-ideal flow reactor.
CO 4 Build a reactor for bio based products to achieve production and yield specifications.
CO 5 Demonstrate an experimental data using standard statistical methods to establish quantitative results.

PART- A (10 x $2=20$ Marks)
 (Answer all Questions)

1. On doubling the concentration of reactant, the rate of reaction doubles. Find the reaction order for any unimolecular reaction.
2. How will you differentiate elementary and non-elementary reactions based on order and
3. Compare single and multiple plug-flow reactors in terms of conversion
4. Comment on holding time and space time for ideal flow reactors.
5. List out any four characteristics of tracer used in RTD measurement2
6. Brief about earliness and lateness of mixing of fluid with a suitable diagram. $\quad \mathbf{3} \quad \mathbf{2}$
7. State Whitman's two film theory of mass transfer in a heterogeneous system. $\mathbf{4} \quad \mathbf{2}$
8. Point out the role of Hatta number in liquid-liquid and gas-liquid reactions. $\mathbf{4} \quad \mathbf{2}$
9. Distinguish between Shrinking-Core Model and Progressive-Conversion Model in case 5 of fluid-particle reactions.
10. Experiments are conducted on the decomposition of A with a particular catalyst. Is
\qquad
2
11. (a) A reactant, called the substrate is converted to product by the action of enzyme, a high molecular weight ($\mathrm{mw}>10000$) protein-like substance. An enzyme is highly specific, catalyzing one particular reaction, or one group of reactions. Thus, $A \xrightarrow{\text { enzyme }} \mathrm{R}$. Many of these reactions exhibit the following behavior: A rate proportional to the concentration of enzyme introduced into the mixture $\left[\mathrm{E}_{0}\right]$; At low reactant concentration the rate is proportional to the reactant concentration, [A]; At high reactant concentration the rate levels off and becomes independent of reactant concentration. Propose a mechanism to account for this behavior
(OR)
(b) α-Amylase from malt is used to hydrolyse starch. The dependence of initial reaction rate on temperature is determined experimentally. At $40^{\circ} \mathrm{C}$, the rate of glucose production is four times the rate at $20^{\circ} \mathrm{C}$. Find the activation energy for this reaction using Arrhenius law and collision theory. What is the percentage difference in rate of glucose production at $60^{\circ} \mathrm{C}$ predicted by these methods?
12. (a) Consider a reactor where lateral mixing of fluid exists but no mixing along the flow path. Derive the performance equation of the above reactor. Assume constant-density system.

(OR)

(b) Consider a system of N equal-sized mixed flow reactors connected in series. Derive an expression for space time of the above system by assuming first order reaction.
13. (a) The concentration readings given below represent a continuous response to pulse input into a closed vessel. This vessel is to be used as a reactor for decomposition of liquid $\mathrm{A}, \mathrm{A} \rightarrow$ products with rate $-\mathrm{r}_{\mathrm{A}}=\mathrm{k} \mathrm{C}_{\mathrm{A}}, \mathrm{k}=0.1 \mathrm{~min}^{-1}$.

t, min	0	1	2	3	4	5	6	7	8	9	10	12	14
$\mathrm{C}_{\text {pulse }} \mathrm{g} / \mathrm{m}^{3}$	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0

Estimate the fraction of the reactant unconverted in the real reactor and compare this with the fraction unconverted in a plug flow reactor of same size.

(OR)

(b) A first order liquid phase reaction $\left(\mathrm{k}=0.25 \mathrm{~min}^{-1}\right)$ is carried out in a reactor for which the results of (pulse) tracer test are given below. Calculate conversion using Tank-in-series model.

t, min	0	1	2	3	4	5	6	7	8	9	10	12	14
$\mathrm{C}_{\text {pulse }}, \mathrm{g} / \mathrm{m}^{3}$	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0

4. (a) Air with gaseous A bubbles through a tank containing aqueous B. Reaction occurs as follows $\mathrm{A}(\mathrm{g} \rightarrow 1)+2 \mathrm{~B}(\mathrm{l}) \rightarrow \mathrm{R}(\mathrm{l}),-\mathrm{r}_{\mathrm{A}}=\mathrm{k} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}$. For this system,
$k_{\text {Aga }}=0.01 \mathrm{~mol} / \mathrm{hr}^{2} \mathrm{~m}^{2} . \mathrm{Pa}$
$k_{A l a}=20 \mathrm{hr}^{-1}$
$a=20 \mathrm{~m}^{2} / \mathrm{m}^{3}$ reactor
$f_{l}=0.98$
$D_{A l}=D_{B l}=10^{-6} \mathrm{~m}^{2} / \mathrm{hr}$
$H_{A}=10^{5} \mathrm{~Pa} \cdot \mathrm{~m}^{3} / \mathrm{mol}$, very low solubility
$k=10^{6} \mathrm{~m}^{6} / \mathrm{mol}^{2} . \mathrm{hr}$
For a point in the absorber-reactor where $\mathrm{p}_{\mathrm{A}}=5 \times 10^{3} \mathrm{~Pa}$ and $\mathrm{C}_{\mathrm{B}}=100 \mathrm{~mol} / \mathrm{m}^{3}$, Find the location of the reaction zone and resistance to reaction. Also calculate the rate of reaction and determine the behaviour in the liquid film.

(OR)

(b) Gaseous A absorbs and reacts with B in liquid according to the equation $\mathrm{A}(\mathrm{g} \rightarrow \mathrm{l})+\mathrm{B}(\mathrm{l}) \rightarrow \mathrm{R}(\mathrm{l}),-\mathrm{r}_{\mathrm{A}}=\mathrm{k} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}$ in a packed bed under conditions where
$k_{\text {Ag }} a=0.1 \mathrm{~mol} / \mathrm{hr}^{2} \mathrm{~m}^{3}$ of reactor. Pa
$k_{A l a}=100 \mathrm{~m}^{3}$ liquid $/ \mathrm{m}^{3}$ of reactor. hr
$a=100 \mathrm{~m}^{2} / \mathrm{m}^{3}$ reactor
$f_{l}=0.01 \mathrm{~m}^{3}$ liquid $/ \mathrm{m}^{3}$ of reactor
$D_{A l}=D_{B l}=10^{-6} \mathrm{~m}^{2} / \mathrm{hr}$
$k=10^{-2} \mathrm{~m}^{3}$ liquid $/ \mathrm{mol} . \mathrm{hr} ; H_{A}=1 \mathrm{~Pa} . \mathrm{m}^{3}$ of liquid $/ \mathrm{mol}$.
At a point in the reactor where $\mathrm{p}_{\mathrm{A}}=100$ pa and $\mathrm{C}_{\mathrm{B}}=100 \mathrm{~mol} / \mathrm{m}^{3}$ liquid and for the given values of reaction rate and Henry's law constant, calculate the rate of reaction in $\mathrm{mol} / \mathrm{hr}^{2} \mathrm{~m}^{3}$ of reactor. Locate the reaction zone and the resistance to reaction. Also determine the behaviour in the liquid film.
15. (a) Two small samples of solids are kept in a constant environment oven for period of 1 h . Under the conditions prevailing in the oven, the 4 mm particles are 57.8% converted, the 2 mm particles are 87.5% converted into a firm non-flaking product. Find the rate controlling mechanism for the conversion of solids. Also calculate the time required for complete conversion of 1 mm particle in this oven.

(OR)

(b) Experiments are carried out on different sizes to determine the effect of pore diffusion of crushed catalyst (spherical particles) for first order irreversible reaction. The surface concentration of reactant A was $\mathrm{C}_{\mathrm{AS}}=$ $2 \times 10^{-4} \mathrm{~mol} / \mathrm{cm}^{3}$. Determine the true rate constant and effective diffusivity. Data:

$\mathrm{d}_{\mathrm{p}}, \mathrm{cm}$	$\left.-r_{A, \text { Obs }, \mathrm{mol} /(\mathrm{h.cm}}{ }^{3} . \mathrm{cat}\right)$
0.20	0.12
0.02	1.03

(14) 4

PART- C $(\mathbf{1} \times 10=10$ Marks $)$

(Q.No. 16 is compulsory)
16. A pulse input of tracer ($\mathrm{M}=13.5 \mu \mathrm{~mol} / \mathrm{s}$) into a vessel of volume $60 \mathrm{~cm}^{3}$ gives the results as shown below. The results are found to be consistent by checking the material balance with the tracer curve. Construct E curve. Also calculate mean residence time.

