

Experiments are conducted on the decomposition of A with a particular catalyst. Is 10. 5 the reaction influenced by pore diffusion? Data: For cube of 2 cm pellet: Effective mass diffusivity = $5x10^{-5}$ m³/(m cat.h); Observed reaction rate = 10^{5} mol/(h.m³ cat); C_{Ag} = 20 mol/m³ (at 1 atm and 336°C).

1.

2.

3.

4.

5.

6.

7.

8.

9.

PART- B (5 x 14 = 70 Marks)

- 11. (a) A reactant, called the substrate is converted to product by the action of enzyme, a high molecular weight (mw > 10000) protein-like substance. An enzyme is highly specific, catalyzing one particular reaction, or one group of reactions. Thus, $A \xrightarrow{enzyme} R$. Many of these reactions exhibit the following behavior: A rate proportional to the concentration of enzyme introduced into the mixture $[E_0]$; At low reactant concentration the rate is proportional to the reactant concentration, [A]; At high reactant concentration the rate levels off and becomes independent of reactant concentration. Propose a mechanism to account for this behavior. (**OR**)
 - α -Amylase from malt is used to hydrolyse starch. The dependence of initial **(b)** reaction rate on temperature is determined experimentally. At 40°C, the rate of glucose production is four times the rate at 20°C. Find the activation energy for this reaction using Arrhenius law and collision theory. What is the percentage difference in rate of glucose production at 60°C predicted by these methods?
- Consider a reactor where lateral mixing of fluid exists but no mixing along 12. (a) the flow path. Derive the performance equation of the above reactor. Assume constant-density system.

(**OR**)

- Consider a system of N equal-sized mixed flow reactors connected in **(b)** series. Derive an expression for space time of the above system by assuming first order reaction.
- The concentration readings given below represent a continuous response to 13. (a) pulse input into a closed vessel. This vessel is to be used as a reactor for decomposition of liquid A, A \rightarrow products with rate $-r_A = kC_A$, k=0.1 min⁻¹.

t, min	0	1	2	3	4	5	6	7	8	9	10	12	14
C _{pulse} , g/m ³	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0

Estimate the fraction of the reactant unconverted in the real reactor and compare this with the fraction unconverted in a plug flow reactor of same size.

(**OR**)

(b) A first order liquid phase reaction ($k=0.25 \text{ min}^{-1}$) is carried out in a reactor (14) 3 for which the results of (pulse) tracer test are given below. Calculate conversion using Tank-in-series model.

t, min	0	1	2	3	4	5	6	7	8	9	10	12	14
$C_{pulse}, g/m^3$	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0

2

Marks		RBT LEVEL
(14)	1	3
(14)	1	3
(14)	2	3
(14)	2	3
(14)	3	4

Q. Code: 350326 4

(14)

4

5

4

4

14. (a) Air with gaseous A bubbles through a tank containing aqueous B. Reaction (14) occurs as follows A $(g \rightarrow 1) + 2B(1) \rightarrow R(1)$, $-r_A = kC_AC_B$. For this system, k_{Aga} =0.01 mol/hr.m².Pa $k_{Ala}=20 \text{ hr}^{-1}$ $a=20 \text{ m}^2/\text{m}^3 \text{ reactor}$ $f_l = 0.98$ $D_{Al} = D_{Bl} = 10^{-6} \text{ m}^2/\text{hr}$ $H_A=10^5$ Pa.m³/mol, very low solubility $k=10^{6} \text{ m}^{6}/\text{mol}^{2}.\text{hr}$ For a point in the absorber-reactor where $p_A=5x10^3$ Pa and $C_B=100$ mol/m³, Find the location of the reaction zone and resistance to reaction. Also calculate the rate of reaction and determine the behaviour in the liquid film.

(**OR**)

Gaseous A absorbs and reacts with B in liquid according to the equation **(b)** $A(g \rightarrow l) + B(l) \rightarrow R(l)$, $-r_A = kC_AC_B$ in a packed bed under conditions where $k_{Aga} = 0.1 \text{ mol/hr.m}^3 \text{ of reactor.Pa}$ k_{Ala} =100 m³ liquid /m³ of reactor.hr

 $a=100 \text{ m}^2/\text{m}^3 \text{ reactor}$

 $f_l = 0.01 \text{ m}^3 \text{ liquid/m}^3 \text{ of reactor}$

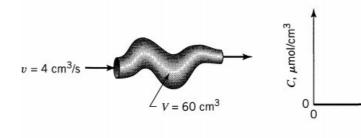
 $D_{Al} = D_{Bl} = 10^{-6} \text{ m}^2/\text{hr}$

 $k=10^{-2}$ m³ liquid/mol.hr; $H_{4}=1$ Pa.m³ of liquid/mol.

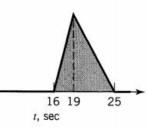
At a point in the reactor where $p_A=100$ pa and $C_B=100$ mol/m³ liquid and for the given values of reaction rate and Henry's law constant, calculate the rate of reaction in mol/hr. m³ of reactor. Locate the reaction zone and the resistance to reaction. Also determine the behaviour in the liquid film.

15. (a) Two small samples of solids are kept in a constant environment oven for (14) period of 1 h. Under the conditions prevailing in the oven, the 4 mm particles are 57.8% converted, the 2mm particles are 87.5% converted into a firm non-flaking product. Find the rate controlling mechanism for the conversion of solids. Also calculate the time required for complete conversion of 1mm particle in this oven.

(**OR**)


Experiments are carried out on different sizes to determine the effect of (14) 5 **(b)** pore diffusion of crushed catalyst (spherical particles) for first order irreversible reaction. The surface concentration of reactant A was C_{AS} = $2x10^{-4}$ mol/cm³. Determine the true rate constant and effective diffusivity. Data:

d _p ,cm	$-r_{A,Obs,}$ mol/(h.cm ³ .cat)
0.20	0.12
0.02	1.03


(Q.No.16 is compulsory)

16. A pulse input of tracer (M=13.5 μ mol/s) into a ves the results as shown below. The results are found t the material balance with the tracer curve. Construct E curve. Also calculate mean residence time.

	Marks	CO	RBT
			LEVEL
ssel of volume 60 cm ³ gives	(10)	3	5
to be consistent by checking			
must E sumus Also soloulata			

