Q. Code: 271067

Reg. No.							

B.E / B.TECH. DEGREE EXAMINATION, MAY 2023

Sixth Semester

BT18602 – GENETIC ENGINEERING AND GENOMICS

(Biotechnology)

(Regulation 2018 / Regulation 2018A)

TIME: 3 HOURS MAX. MARKS: 100

- **CO 1** Explain the methodology to be followed for cloning commercially important genes and for the production of recombinant proteins
- **CO 2** Categorize the different methodology to be followed for constructing genomic and cDNA library and to screen them.
- CO 3 Make use of gene sequencing techniques, site directed mutagenesis and different PCR techniques to amplify and quantify gene expression.
- **CO 4** Utilize whole genome sequencing and mapping.
- CO 5 Apply Microarray, SAGE, TOGA techniques.

PART- A ($10 \times 2 = 20 \text{ Marks}$)

(Answer all Questions)

				CO	RBT LEVEL			
1.	Differentiate a gene cloning from whole organism cloning.							
2.	Identify the most useful type of restriction enzyme (Type 1,2,3) useful in gene cloning							
	an	d desc	cribe the reason for selecting it.					
3.	List the properties of a radioactive probe.							
4.	4. What is the role of S1 nuclease?							
5.	5. Define Asymmetric PCR.							
6.	Differentiate absolute and relative quantification of gene expression.							
7.	Identify any 4 techniques that are helpful in the genome assembly.							
8.	. Define Sequence tagged site.							
9. Compare the types of microarray.				5	4			
10. What is proteogenomics?					2			
			PART- B (5 x $14 = 70 \text{ Marks}$)					
			Mark	s CO	RBT			
11. ((a)	(i)	Describe in detail about any 2 cloning vectors used to clone the gene of your interest. (4)	1	LEVEL 2			
		(ii)	Explain the role of Restriction and modification system in the (10)	1	2			
bacteria. (OR)								
(b)	(i)	Elaborate in detail about the Cre-Lox P based vector. (7)	1	2			
,	~,	(ii)	Explain the principle of blue white screening. (7)	1	2			

Q. Code: 271067

12. (a)	(i)	Illustrate the stepwise procedure involved in the construction of genomic DNA library.	(7)	2	3
	(ii)	Describe in detail about the steps involved in creating first strand cDNA	(7)	2	3
	()	using different primers.	()		
		(OR)			
(b)	(i)	Exemplify the technique of functional complementation used to find the gene related to deafness in mice.	(4)	2	3
	(ii)	Describe the methodology used to identify the full-length mRNA/Cdna.	(10)	2	3
13. (a)	(i)	Compare chemical method and enzymatic method of DNA sequencing.	(7)	3	3
	(ii)	Discuss about the following PCR types. (a) Nested PCR (b) Assembly PCR.	(7)	3	3
		(OR)			
(b)	(i)	Describe about the usage of DNA binding dyes and probes in real time PCR for quantifying gene expression.	(7)	3	3
	(ii)	Explain the principle of error prone PCR, degenerate primers and	(7)	3	3
		nucleotide analogs used to create mutation.			
14. (a)	(i)	Explain the techniques of hierarchical sequencing and shotgun	(14)	4	4
		sequencing in the elucidation of human genome.			
		(OR)			
(b)	(i)	Discuss in detail about physical and genetic mapping techniques to order the fragmented DNA.	(14)	4	4
15. (a)	(i)	Justify that subtractive hybridization is used to detect the deleted genes and uniquely expressed genes.	(7)	5	3
	(ii)	Describe about the list of steps involved in measuring gene expression using microarray.	(7)	5	3
		(OR)			
(b)	(i)	Illustrate the principle of SAGE and its application in finding genes expressed.	(7)	5	3
	(ii)	Describe the steps in the yeast two hybrid system to find the physically interacting proteins.	(7)	5	3
		<u>PART- C (1 x 10 = 10 Marks)</u>			
		(Q.No.16 is compulsory)			
			Marks	CO	RBT LEVEL
16.		nguish the illumina sequencing and pyro sequencing and compute the gram of the following sequence.	(10)	3	5
	5'-G	ATTCCGATTTCCA-3'			
