	Q. Code: 480943											
	Reg. No.											the power lost in the
												oil film is 1.5 mm.
	B.E / B.TECH. DEGREE	EXA	MINA'	FION	, MA	Y 202	3					
	CE18302 – MECHANICS OF FLUIDS						(b)	A tank contains wat				
	(Civil	Engine	ering)	120	10.5							liquid of specific gr
	(Regula	ation 2	018A)									1 m. Calculate (i)
TIN	1E:3 HOURS					N	IAX.	MAR	KS: 1	00		centre of pressure fo
CO1	Summarize the differences between the	solid a	and fluid	l and	apply	the flu	uid pr	opertie	s and	l its		
CO2	behavior in static conditions to solve problems. Apply the conservation laws applicable to fluids and its application through fluid kinematics and							12. (a)	The stream function			
002	dynamics.	manas	una no aj	ppilea	tion th	lougiii	luiu i	lineinat	105 41	14		Calculate the result
CO3	Analyze the model for flow studies and to	predic	t the perf	forma	nce of	prototy	pe.					velocity potential ø
CO4	Analyze the losses in pipe lines for both la	iminar	and turb	ulent o	conditi	ons.		n that	flat -	al;d		
005	5 Apply the boundary layer concepts to find the drag force excreted by fluid on the flat solid surface						(b)	A venturimeter is c				
												such that the directi
	PART- A	(10x2 =	20Mark	s)								35 lps and the size
	(Answe	all Qu	estions)					C)	RBT		inlet and the throat
1.	Calculate the specific weight and weight of c	ne litre	of petro	l of sr	pecific	gravity	v=0.7.	1	L	EVEL 3		the manometric read
2.	Differentiate centre of pressure and centre of	buova	ncv.	1		0,		1		2		
3.	Distinguish steady and unsteady flow with ex-	ample.						2		2	13. (a)	The Pressure diffe
4.	State Cauchy Riemann Equation	1						2		1		turbulent flow dep
5.	What is Distorted model?							3		1		roughness k. Using
6.	State Buckingham's II theorem.							3		1		
7	What are the factors influencing the frictiona	l loss ii	n pipe flo	w?				4		2	(b)	Define and derive e
8	The discharge through a nine is 300 litres/se	c Find	loss of	head v	when r	ine is a	sudde	nlv 4		-		i) Froude Number
J •	contracted from 300 mm to 150 mm diameter								ii) Reynolds Numbe			
9	Define houndary layer thickness							5		1		iii) Mach Number
7. 10	Compute the lift force in a plate 1 5m \times 1 5m	move	at 25 1-	n/hr i-	a air af	densit	v 1 0/	ی ا		1		,
10.	k_{α}/m^{3} Take Coefficient of lift is 0.7	moves	ai 33 KI	11/111 11	1 411 01	uensit	y 1.24	r J	1	3	14. (a)	The difference in w
	kg/m . Take Coefficient of filt 18 0. /.										()	three nines in serie

Marks CO

RBT

PART-B(5x 14=70Marks)

11. (a)	The dynamic viscosity of oil used for lubrication between a shaft and sleeve	(14)	1	LEVEL 3	
	is 6 poise. The shaft is of diameter 0.4 m and rotates at 190 r.p.m. Estimate				

he bearing for a sleeve length of 90 mm. The thickness of

(OR)

- ter up to a height of 0.5 m above the base. An immiscible (14) 1 3 ravity 0.8 is filled on the top of water upto to a height of total pressure on one side of tank (ii) the position of for one side of the tank. Width of tank is 2m wide.
- on for a two dimensional flow is given by Ψ = 2xy. (14) 2 3 tant velocity at P(1,2). Also determine expression for the

(OR)

- connected to pipeline carrying water in upward direction (14) 3 2 ion of flow is 300 with the horizontal. The rate of flow is of venturimeter is 15 cm x 7.5 cm. The distance between t is 250 mm. Determine the difference in pressure head if ading is 15 cm.
- erence Δp in a pipe diameter D and length L due to (14) 3 3 pends on the velocity V, Viscosity μ , density ρ and Buckingham's π - theorem, obtain an expression for Δp . (**OR**) expressions for the following dimensionless numbers. (14) 3 3
 - ber
- vater surface levels in two tanks, which are connected by (14) 4 3 es of length 300 m, 170 m and 210 m and of diameters 300 mm, 200mm and 400 mm respectively, is 15m. Determine the rate of flow if co efficient of frictions are 0.005, 0.0052 and 0.0048 respectively. Consider case a) minor losses and case b) neglecting minor losses. (OR)

Q. Code: 480943

Q. Code: 480943

Marka CO

DDT

3

- (b) A pipeline having dia 25 cm and length 4 km connects two water tanks (14) 4 having piezometric heads of 120 m and 80 m at upstream and downstream respectively. Determine the rate of flow. To increase the discharge another pipe of 25 cm dia is connected to existing pipe in parallel pattern on lower 2 km length. Determine the % change in discharge. Consider f=0.04.
- **15. (a)** Calculate the ratio of Momentum thickness to boundary layer thickness (14) 5 3 (θ/δ) and displacement thickness to boundary layer thickness (δ^*/δ) for the velocity profile distribution $u/U=(3/2)(y/\delta) (1/2)(y/\delta)2$

(OR)

(b) A kite weighing 8.0 N has an effective area of 0.6 m². It is maintained in air (14) 5 3 at an angle of 10° to the horizontal. The string attached to the kite makes an angle of 45° to the horizontal and this position the value of coefficient of drag and lift are 0.6 and 0.8 respectively. Find the speed of the wind and the tension in the string. take the density of air is 1.25 kg/m³.

PART- C(1x 10=10Marks)

(Q.No.16 is compulsory)

		WIAI KS	co	LEVEL	
16.	Derive the Euler's equation of motion for the steady flow of an ideal fluid		2	3	
	along a stream line.				

Q. Code: 480943

4