	Q	. Code: 4	1272	232		
	Reg. No.				12. (a)	A strip footing having width 2 m is laid at a deproperties are $\gamma = 18$ kN/m ³ , $\phi = 30^{\circ}$ and C= 20 k
	B. E / B. TECH.DEGREE EXAMINATION, MAY 2023					$N_q = 22.5$, $N_r = 19.7$. The Water table is at de
	Fifth Semester CE18501 – APPLIED GEOTECHNICAL ENGINEERING (Civil Engineering) (Regulation 2018)					footing. $F.O.S = 3$
						Determine i) Ultimate Bearing Capacity
						ii) Net Ultimate Bearing Capacity
T CC		X. MARKS: 100				iii) Safe Bearing Capacity
CU	of foundation.	arameters	anu	type		iv) Net Safe Bearing Capacity
CC	CO 2 Design shallow foundations, its component or process as per the needs and specifications					v)Safe Load applied on the footing
CC		per the ne	eeds	and		(OR)
CC	specifications CO 4 Design deep foundations, its component or process as per the needs and specific				(b)	Compute the safe bearing capacity of a square for
CC						a depth of 1 m below the ground level in a soil
						=20° and c= 0. For ϕ =20°, take Nc =17.7, Nq =7.
	PART- A(10x2=20Marks) (Answer all Questions)					factor of safety when water table is very deep.
		CC		RBT LEVEL		safe bearing capacity of the footing if the water
1.	Write the different types of samplers.	1		2	12 (a)	Explain the decign precedure of Transzoidel cor
2.	How do you decide the depth of exploration? List the factors you will consider.	1		2	13. (a)	Explain the design procedure of Trapezoidal cor sketch.
3.	Sketch the pressure distribution beneath a flexible footing on cohesive and cohesio	onless 2		2	(OR)	
	soil.	-		-	(b)	What is meant by floating foundation? List their
4.	Differentiate general shear failure and local shear failure.	2		2		that are encountered during executions. Also brid
5.	Indicate the circumstances under which strap footing is adopted.	3		2	14. (a)	Discuss in detail about the method of estima
6.	What is ultimate bearing capacity?	3		2	14. (a)	capacity of piles.
7.	State Feld's rule for determining group capacity of pile groups.	4		2		(OR)
8.	What is under reamed piles? When it is preferred?	4		2	(b)	(i) What is meant by under reamed pile. When
9.	What is active earth pressure?	5		2		why? Discuss.(ii) Explain about the different methods of pile
10.	List out the different types of retaining wall.	5		2		(ii) Explain about the american methods of phe
	PART- B (5x 14=70Marks)				15. (a)	A retaining wall with a smooth vertical back ret
		Marks	С 0	RBT LEVEL		of 8 m. The backfill has horizontal surface and
11.	(a) Explain in detail about the geophysical method of site exploration with neat sketch.	(14)	1	3		28° , $\gamma_{\text{bulk}} = 18 \text{ kN/m}^3$, $\gamma_{\text{sat}} = 20 \text{ kN/m}^3$. Calculate
	(OR)					application on the wall. Take the water table is a
	(b) Explain in detail about the salient features of bore log report.	(14)	1	3		Also determine the change in the total active thru
						from ground level.

2

Q. Code: 427232

laid at a depth 1.5 m below G.L .The soil (14) 2 4 and C= 20 kPa . For $\phi = 30^{\circ}$, take N_c = 37.2, able is at depth 3 m below the base of the

(OR)

of a square footing 1.5 m X 1.5 m located at	(14)	2	4
evel in a soil of average density $20 \text{kN/m}^3 \phi$			
=17.7, Nq =7.4 and N γ = 5. Assume a suitable			
is very deep. Also compute the reduction in			
g if the water table rises to the ground level.			
apezoidal combined footing with the suitable	(14)	3	3
(OR)			
on? List their types and explain the problems	(14)	3	3
ons. Also brief how they are managed?			
			_
od of estimating the individual and group	(14)	4	4
(OR)			
ned pile. When and where they are used and	(08)	4	3
ethods of pile driving	(06)	4	3
1 8	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-
rtical back retains sand backfill for the depth	(14)	5	4
surface and has the properties of $c = 0$, $\Phi =$			
m ³ . Calculate the active thrust and its point of			
vater table is at 5 m from the ground surface.			
tal active thrust if the water table rises to 3 m			

Q. Code: 427232

5

4

(b) A retaining wall is 5 m high. Its back is vertical and it has got sandy backfill up (14) to its top. The top fill is horizontal and carries a uniform surcharge of 80 kN/m².Determine the active earth pressure on the wall per meter length of the wall. Water table is 1.5 m below the top of the fill. $\gamma_{sat} = 18.5$ kN/m³.Moisture content above water table is 13%, $\Phi = 30^{\circ}$,G=2.6 and n=30%.The wall friction may be neglected.

PART- C (1x 10=10 Marks)

(Q.No.16 is compulsory)

Marks CO RBT LEVEL

4

How Standard penetration test is conducted in the field to determine the (10) 1 properties of the subsurface soil? Also discuss the corrections to be applied for field 'N' Value.

Q. Code: 427232

4