RBT

CO

B.E / B.TECH.DEGREE EXAMINATION, MAY 2023 Fifth Semester **CE18502 – DESIGN OF REINFORCED CONCRETE ELEMENTS**

(Civil Engineering) (Regulation R2018)

(Use Code Book IS 456-2000, Design Charts and Relevant Tables of SP16)

TIME:	3 HOURS MAX. MARE	MAX. MARKS: 100	
COURSE OUTCOMES	STATEMENT	RBT LEVEL	
CO1	Differentiate the various design methodologies for the design of RC elements and design beam by Working stress method and limit state method.	3	
CO2	Design the various types of beams and slabs by limit state method.	3	
CO3	Design the various types of slabs by the limit state method.	3	
CO4	Design columns for axial, uniaxial and biaxial eccentric loadings.	3	
CO5	Design the axially and eccentrically loaded footings by limit state method.	3	

PART- A(10x2=20Marks) 11 0

(Answer al	l Questions)
------------	--------------

			LEVEL
1.	What is the significance of doubly reinforced section?	1	2
2.	List out the minimum and maximum area of tension reinforcement in beam.	1	2
3.	Determine the anchorage length for 20 mm diameter bar.	2	3
4.	What are the different modes of shear failure in RCC beams?	2	2
5.	What is the importance of two-way slabs over one way slab?	3	1
6.	Why corner reinforcement is provided in a two-way slab? And sketch the edge and middle strips of a two-way slab?	3	1
7.	Write the pitch and diameter of lateral ties for columns as per IS 456.	4	1
8.	State the condition for the pitch for lateral ties to be checked.	4	2
9.	Under what circumstances combined rectangular footing are adopted.	5	2
10.	Compare one way and two-way shear in footing.	5	1

PART-B (5x 1

11. (a) Compute the moment of resistance of a singl width and 300mm effective depth to the cen stresses in steel and concrete are not to exceed The reinforcement consists of 4 bars of 16 mm above beam is used over a effective span of 5 m beam it can carry including its own weight.

(**OR**)

A rectangular concrete beam is supported or **(b)** spaced at a clear distance of 6.5 m. The beam of 30 kN/m. Design the beam using working st concrete and Fe500 grade steel. Draw reinforcement details.

12. (a)	Design the reinforcement required for a rectan
	following data:
	Size of the beam section = $350 \text{ mm x} 700 \text{ mm}$
	Factored shear force = 95 kN
	Factored torsional moment = 45 kNm
	Factored bending moment = 115 kNm
	Materials = M25 Grade concrete and Fe500 st
	of design.
	(OR)

- (b) A cantilever beam having width of 200 mm and effective depth 300mm (14) 2 5 supports UDL and is reinforced with 4 bars of 16 mm diameter. If the factored total load is 80 kN. Calculate
 - 1. Maximum local bond stress
 - 2. Anchorage and development bond length required
 - 3. Aerage bond stress
- Design a R.C. slab for a room having inside dimensions 3 m x 6 m. The (14) 3 3 13. (a) thickness of supporting wall is 300 mm. The slab carries 100 mm thick lime concrete at its top, the unit weight which may be taken as 19kN/m. The live load on the slab may be taken as 2.5 kN/m. Assume the slab to the simply supported at the ends. Use M30 grade concrete and Fe500 grade steel. (**OR**)

4=70Marks)				
,	Marks	CO	RBT LEVEI	
y reinforced beam 160 mm	(14)	1	3	
tre of reinforcement, if the				
d 140 N/mm ² and 5 N/mm ² .				
diameter take $m = 18$. If the				
n. Find the maximum load of				
n two walls 750 mm thick,	(14)	1	3	
carries a superimposed load				
ress method. Use M25 grade				

ngular beam section with the (14) 5 2

teel. Adopt limit state method

Q. Code: 293548

- (b) Design a slab over a room 4.5 m x 6 m. the slab is supported on masonry (14) 3 3 walls all round, with adequate restraint and corners are held down. The live load on the slab is 3000 N/m². The slab has a bearing of 150 mm on the supporting walls. Use M30 grade concrete and Fe500 grade steel.
- 14. (a) Design the longitudinal reinforcement in a short column 400mm x 600mm (14) 4 3 subjected to an ultimate axial load of 1600 kN together with ultimate moments of 120 kN-m and 90 kN-m about the major and minor axis respectively. The reinforcements are distributed equally on all four sides. Adopt M25 grade concrete and Fe500 steel bars.

(OR)

- (b) Design a rectangular column, 5m long restrained in position and direction (14) 4 3 at both ends, to carry an axial load of 120kN. Adopt M25 grade of concrete and Fe500 grade of steel.
- 15. (a) A rectangular column of size 300mm x 450mm transmits a limit state load (14) 5 3 of 600 kN at an eccentricity of 150mm about the major axis. Design a suitable isolated footing for the column by the limit state concept. Safe capacity of soil is 200 kN/m². Use M30 concrete and Fe 500 steel.

(OR)

(b) A square column of size 400mm carries a service load of 600 kN. Design (14) 5 3 an isolated footing for the column by limit state method, if the safe bearing capacity of the soil is 250 kN/m². Use M25 grade concrete and Fe 500 grade steel.

PART- C(1x 10=10Marks)

(Q.No.16 is compulsory)

MarksCORBT16.Design the beam to carry a factored moment of 145 kNm. Use M30 grade(10)13concrete and Fe 500 grade steel.3

Q. Code: 293548