

B. E / B. TECH.DEGREE EXAMINATION, MAY 2023 **Sixth Semester**

CE18601 – DESIGN OF STEEL STRUCTURES

(CIVIL ENGINEERING)

(Regulation 2018)

(Use of IS 800, IS875 (Part 3) and Steel Tables may be permitted) TIME-3 HOUDS MAY MADIZO, 100

IIME:3	HOUKS MAX. MAKKS:	100
COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Provide the apt connection for the problem statement using codal provisions.	3
CO 2	Design of tension members using codal provisions.	3
CO 3	Design columns and columns bases.	3
CO 4	Design bending member with appropriate section using design principles.	3
CO 5	Compute the wind loads and others loads on industrial structures based on codal provisions.	3

PART- A(10x2=20Marks)

(Answer all Questions	:)
-----------------------	----

		CO	RBT LEVEL
1.	Write a note on plane moment eccentric connection.	1	1
2.	List the advantages of HSFG bolts.	1	1
3.	Sketch any two typical cross sections of tension member.	2	2
4.	4. State the purpose of providing tension splice.		2
5.	Discuss the purpose of providing battens in compound steel columns.	3	2
6.	6. Distinguish slab base and gusseted base.		2
7.	What are castellated beams?	4	2
8.	. Define laterally restrained beam. Why do compression flanges require lateral support?		2
9.	Define end bearing in roof trusses.	5	1
10.	What are the loads acting on the roof truss and for what load combination the truss to be designed?	5	2
	PART- B (5x 14=70Marks) Marks	CO	RBT LEVEL

Design and detail a welded joint for connecting two 400 mm x15 mm flats (14) 1 3 11. (a) to carry a factored tensile load of 300 kN.

(OR)

- Design a single bolted double cover butt jo **(b)** thickness 12 mm for maximum efficiency. Boiler plates are of 416 grade. Find the efficient
- Design an unequal angle section to act as a 12. (a) roof truss, if it is to carry an axial load of 120 (0)
 - Design a tension member to carry a factored **(b)** 3m long tension member is connected to a gu one line of 20mm diameter bolts of grade 4.6
- Design a gusseted base f a column ISHB 35 13. (a) carrying a factored load of 3600 kN.The co pedestal with M25 concrete.

 $(\mathbf{0}\mathbf{I}$

- Design a laced column with two channel s **(b)** length 10m to carry an axial factored load of assumed to have restrained in position but ne (hinged ends)
- Design a simply supported beam of 10m e 14. (a) factored load 60 kN/m. The depth of beam sl compression flange of the beam is laterally stiff bearings is 75mm.

(OI

Design a welded plate girder of span 24m to **(b)** 35 kN/m. Avoid use of bearing and interr steel.

Design a purlin for a trussed roof from the fo 15. (a)

- Span of roof truss=10m i.
- ii. Spacing of roof trusses=4. 5 m/ cer
- iii. Spacing of purlins along the slope centre
- Slope of roof truss=1 vertical to 4 h iv.
- Wind load on roof surface normal t v.
- Vertical load from roof sheeting =1 vi.
- Use channel section. vii.

Q. Code: 795267

R) bint to connect boiler plates of Use M16 bolts of grade 4.6. iency of joint.	(14)	1	3
a tie member 1.56 m long in a 0 kN.	(14)	2	3
R) tensile load of 300 kN. The usset plate 16mm thick with 5.Use Fe 410 grade steel.	(14)	2	3
50 @9.10 N/m with two plates plumn is supported on concrete	(14)	3	3
R) section placed back to back of f 1400 kN. The column may be not in direction at both the ends	(14)	3	3
effective span carrying a total hould not exceed 500 mm. The y supported by floor. Assume	(14)	4	3
R)			
o carry a superimposed load of mediate stiffeners. Use Fe415	(14)	4	3
bllowing data:	(14)	5	5
nter to centre of roof truss=1.8 m/ center to			
horizontal to roof=1200N/m ² 180N/ m ² .			

Q. Code: 795267

- (b) Design a gantry girder for an electric overhead crane with the following (14) 5 5 data.
 - i. Capacity of crane=100 kN.
 - ii. Weight of trolley=40 kN.
 - iii. Weight of crane girder=200 kN.
 - iv. Span of crane girder=18m.
 - v. Centre to centre distance between columns=8m.
 - vi. Minimum clearance between trolley and gantry girder=1.2m.
 - vii. Center to centre distance of crane wheels=3m.

<u>PART- C (1x 10=10Marks)</u>

(Q.No.16 is compulsory)

Marks	CO	RBT
		LEVEL

16. A single unequal angle ISA 9060, 6 mm is connected to a 10 mm gusset (10) 2 3 plate at the ends with 5 nos. of 16 mm bolts to transfer tension. Determine the design tensile strength of the angle if the gusset is connected to 90 mm leg.
