Reg. No. \square COURSE
OUTCOMES statement

OUTCOMES Provide the \quad| RBT |
| :---: |
| LEVEL |

CO 1 Provide the apt connection for the problem statement using codal provisions. 3

CO 2 Design of tension members using codal provisions. 3
CO 3 Design columns and columns bases. 3
CO 4 Design bending member with appropriate section using design principles. 3
CO 5 Compute the wind loads and others loads on industrial structures based on codal

PART- A(10x2=20Marks)
(Answer all Questions)
LEVEL

List the advantages of HSFG bolts
3. Sketch any two typical cross sections of tension member.
4. State the purpose of providing tension splice.

- 3

7. What are castellated beams? 4
8. Define laterally restrained beam. Why do compression flanges require lateral support? $\mathbf{4} \quad \mathbf{2}$
$\begin{array}{llll}9 . & \text { Define end bearing in roof trusses. } & \mathbf{5} & \mathbf{1}\end{array}$
9. What are the loads acting on the roof truss and for what load combination the truss to be designed?

PART- B (5x 14=70Marks)

 LEVEL11. (a) Design and detail a welded joint for connecting two $400 \mathrm{~mm} \times 15 \mathrm{~mm}$ flats (14) $\mathbf{1}$ to carry a factored tensile load of 300 kN .

(OR)

(b) Design a single bolted double cover butt joint to connect boiler plates of thickness 12 mm for maximum efficiency. Use M16 bolts of grade 4.6. Boiler plates are of 416 grade. Find the efficiency of joint.
12. (a) Design an unequal angle section to act as a tie member 1.56 m long in a roof truss, if it is to carry an axial load of 120 kN .
(OR)
(b) Design a tension member to carry a factored tensile load of 300 kN . The 3 m long tension member is connected to a gusset plate 16 mm thick with one line of 20 mm diameter bolts of grade 4.6.Use Fe 410 grade steel.
13. (a) Design a gusseted base f a column ISHB $350 @ 9.10 \mathrm{~N} / \mathrm{m}$ with two plates carrying a factored load of 3600 kN . The column is supported on concrete pedestal with M25 concrete.

(OR)

(b) Design a laced column with two channel section placed back to back of length 10 m to carry an axial factored load of 1400 kN . The column may be assumed to have restrained in position but not in direction at both the ends (hinged ends)
14. (a) Design a simply supported beam of 10 m effective span carrying a total factored load $60 \mathrm{kN} / \mathrm{m}$. The depth of beam should not exceed 500 mm . The compression flange of the beam is laterally supported by floor. Assume stiff bearings is 75 mm

(OR)

(b) Design a welded plate girder of span 24 m to carry a superimposed load of $35 \mathrm{kN} / \mathrm{m}$. Avoid use of bearing and intermediate stiffeners. Use Fe415 steel.
15. (a) Design a purlin for a trussed roof from the following data:
i. Span of roof truss $=10 \mathrm{~m}$
ii. Spacing of roof trusses $=4.5 \mathrm{~m} /$ center to centre
iii. Spacing of purlins along the slope of roof truss $=1.8 \mathrm{~m} /$ center to centre
iv. Slope of roof truss=1 vertical to 4 horizontal
v. Wind load on roof surface normal to roof $=1200 \mathrm{~N} / \mathrm{m}^{2}$
vi. Vertical load from roof sheeting $=180 \mathrm{~N} / \mathrm{m}^{2}$.
vii. Use channel section
(14) 13
(14) 23
(14) 23
(14) 3
(b) Design a gantry girder for an electric overhead crane with the following data.
i. Capacity of crane $=100 \mathrm{kN}$.
ii. Weight of trolley=40 kN.
iii. Weight of crane girder=200 kN.
iv. Span of crane girder $=18 \mathrm{~m}$.
v. Centre to centre distance between columns $=8 \mathrm{~m}$
vi. Minimum clearance between trolley and gantry girder $=1.2 \mathrm{~m}$.
vii. Center to centre distance of crane wheels $=3 \mathrm{~m}$.

PART- C (1x 10=10Marks)

(Q.No. 16 is compulsory)

Marks CO RBT LEVEL

16. A single unequal angle ISA $9060,6 \mathrm{~mm}$ is connected to a 10 mm gusset (10) $\mathbf{2} \quad \mathbf{3}$
plate at the ends with 5 nos. of 16 mm bolts to transfer tension. Determine the design tensile strength of the angle if the gusset is connected to 90 mm leg.
