Q. Code: 210222

Reg. No.

B. E / B. TECH.DEGREE EXAMINATION, MAY 2023

Sixth Semester

CE18602 – WASTE WATER ENGINEERING

(Civil Engineering) (Regulation 2018)

TIME: 3 HOURS

MAX. MARKS: 100

- Calculate sewage generation, classify the characteristics and composition of sewage and compute **CO1** the sizes of sewerage system components.
- CO₂ Compute the sizes of the units and discuss the unit operations and processes that are used in primary treatment of sewage and onsite sanitation.
- CO3 Compute the sizes of the units and explain the unit operations and processes that are involved in secondary treatment of sewage.
- Describe the advanced sewage treatment technology and reuse of sewage. **CO4**
- **CO5** Describe the self-purification process of streams and calculate the sludge generation and explain the sludge management.

PART- A (10x2=20Marks)

(Answer all Questions)

		CO	RBT LEVEI
1.	Differentiate dry weather flow and wet weather flow.	1	2
2.	What is trap? State its quality requirements.	1	2
3.	Define on-site sanitation. What are the methods of onsite sanitation?	2	2
4.	What is the function of primary settling?	2	2
5.	What is the function of aeration in Activated Sludge Process?	3	2
6.	What is meant by MLVSS?	3	2
7.	Discuss about MBR.	4	2
8.	What are the various processes involved in the constructed wetlands?	4	2
9.	What is meant by disposal by dilution?	5	2
10.	What are the steps involved in sludge treatment?	5	2

PART- B (5x 14=70Marks)

		Marks	CO	RBT LEVEL
11. (a)	Determine designed discharge for a combined system serving population of	(14)	1	3
	50000 with rate of water supply of 135 LPCD. The catchment area is 100			
	hectares, the duration of rainfall is 30 minutes and the average coefficient			
	of runoff is 0.60.			

(**OR**)

		Q. Co	de: 2	10222
(b)	Enumerate and explain with neat sketches of the various sewer appurtenances.	(14)	1	3
12. (a)	Design and draw a grit chamber for population 50000 with water consumption of 135 LPCD. Assume, if any data required.	(14)	2	3
(b)	Describe the steps involved in the design of septic tank. And also explain the working of a septic tank with neat sketch.	(14)	2	3
13. (a)	Design a complete mixed activated sludge process aeration tank for treatment of 4 MLD sewage having BOD concentration of 180 mg/L. The effluent should have soluble BOD of 20 mg/L or less. Consider the following: i. MLVSS/MLSS = 0.8 ii. Return sludge SS concentration = 10000 mg/L iii. MLVSS in aeration tank = 3500 mg/L iv. Mean cell residence time adopted in design is 10 days	(14)	3	3
(b)	Summarize in detail with neat sketches about the trickling filters and state the various advantages and disadvantages of conventional trickling filter.	(14)	3	3
14. (a)	What are all the suitable conditions for adopting SBR and MBBR as a treatment units. Explain the process and application of SBR and MBBR.	(14)	4	3
(b)	Explain with neat sketch the operations, functions, advantages and disadvantages of the UASB reactor.	(14)	4	3
15. (a)	Name the various actions involved in the self-purification process of a stream and explain them briefly.	(14)	5	3
(b)	(OR) Describe briefly about the various types of sludge digestion tank with neat sketch.	(14)	5	3
	<u>PART- C (1x 10=10Marks)</u>			
	(Q.No.16 is compulsory)			
		Marks	СО	RBT LEVEL
16.	Design an oxidation ditch for a population of 2000 with per capita water	(10)	3	5

supply of 125 lpcd.