Reg. No.							

B.E / B.TECH. DEGREE EXAMINATION, MAY 2023

Eighth Semester

CH18014 – ENERGY MANAGEMENT IN CHEMICAL PROCESS INDUSTRIES

(Chemical Engineering)

(Regulation 2018)

TIME:3 HOURS				MAX.MARKS: 100				
	COURSE OUTCOMES STATEMENT			RBT LEVEL				
CO	CO 1 Evaluate the concepts of energy management program.			5				
CO	CO 2 Identify the energy management technologies in heat transfer equipments.			3				
CO	CO 3 Apply the energy management techniques in steam utility system			3				
CO	1 Infer the energy management techniques in other common utili	ty systems.		5				
CO	CO 5 Interpret the energy management concepts and applications in process.			5				
	PART- A(10x2=20Marks)							
	(Answer all Questions)							
1			co	RBT LEVEL				
1	Identify the key components of an energy management program.		1	2				
2	2 List a few energy management standards implemented successfully.							
3	3 Define: Thermal efficiency in boilers.							
4	Sketch the temperature profile for any two types of heat exchangers		2	2				
5	5 Mention the focus areas of an effective steam trap management program.							
6	6 Differentiate: Steam trap and vent.							
7	7 Give examples for major rotating machinery in process industries.							
8	8 Indicate the significance of lighting in industries.							
9	9 Categorize a few process improvements for better energy efficiency.							
10	Highlight the necessity for energy dashboards.		5	2				
	PART- B (5x 14=70Marks) (Restrict to a maximum of TWO subdivisions)	Marks	CO	RBT LEVEL				
11(a)	Explain the circular process of energy management in detail specific case study.	with a (14)	1	3				

	Q. CODE:505750						
11(b)	Explain the people resources involved in creating the opportunities for improving energy efficiency indicating their roles and responsibilities in a process industry.	(14)	1	3			
12(a)	Elaborate the various operations involved in maintenance of furnace components for peak efficiency.	(14)	2	4			
	(OR)						
12(b)	Analyze the design parameters to be considered in heat exchangers to attain the maximum benefits of energy enhancement technologies.	(14)	2	4			
13(a)	Identify the issues that are to be addressed for a successful steam leak management program and explain the same.	(14)	3	3			
	(OR)						
13(b)	Explain in detail, the costs involved in marginal steam pricing with a neat diagram.	(14)	3	3			
14(a)	Explain in detail about the component related opportunities available to achieve energy efficient refrigeration.	(14)	4	3			
	(OR)						
14(b)	List the various industrial insulation types and analyze their applications with examples.	(14)	4	3			
15(a)	Evaluate various ideas that can be utilized for optimizing furl gas disposition.	(14)	5	3			
(OR)							
15(b)	Explain about the choice of key Energy performance indicators and their significance in process industries.	(14)	5	3			
PART- C (1x 10=10Marks)							
(Q.No.16 is compulsory)							
		Marks	CO	RBT LEVEL			
1/ D	No	(10)	_	_			

5 5

16 Develop a neat flow diagram to explain a detailed methodology for an (10) efficient energy management in any one process industry.
