B. E / B. TECH.DEGREE EXAMINATION, MAY/JUNE 2023
 Third Semester

CH18301 - CHEMICAL PROCESS CALCULATIONS

(Chemical Engineering)

(Regulation 2018 \& 2018A)

(USE OF PSYCHROMETRIC CHART IS PERMITTED)

TIME: 3 HOURS

MAX. MARKS: 100

CO1 Interpret the data presented in different unit systems and apply various gas laws to calculate the unknowns in a given system
CO2 Build basic knowledge on various unit operations and processes and perform material balances for steady and unsteady state chemical systems.
CO3 Provide insight into the concepts and calculations associated with gases which involves two phase systems.
CO4 Perform energy balance calculations for steady and unsteady state chemical processes.
CO5 Implement various methods used for analyzing combustion process and demonstrate the ability to understand process simulators.

PART- A (10x2=20Marks)

(Answer all Questions)

1. Relate the partial pressure of a pure component to its vapour pressure
2. Explain Molarity and Molality. $\mathbf{1} \quad 2$
3. Identify the limiting reactant and excess reactant when 30 kg of Calcium reacts with $40 \quad \mathbf{2} \quad \mathbf{3}$ kg of Oxygen to form Calcium Oxide.
4. Construct the recycle, bypass and purge operations. $\quad \mathbf{2}$
5. Develop the relationship between absolute and molal humidity. $\quad \mathbf{3} \quad \mathbf{3}$
6. 'High humidity makes us feel hotter than actual air temperature' - Explain. $\quad \mathbf{3} \quad \mathbf{2}$
7. Outline the application of Hess's law of constant heat summation. 4
8. Illustrate the application of Kopp's rule with an example. $4 \quad \mathbf{2}$
9. Compare Gross Calorific value and Net Calorific value. $\quad \mathbf{5} \quad \mathbf{2}$
10. Write a short note on process simulators. $\mathbf{5}$
11. (a) (i) At 298 K , the solubility of methyl chloride in methanol is 44 kg per 100 kg . Determine the weight fraction and mole fraction of methanol in the saturated solution.
(ii) Compare the pressures given by the ideal gas and Van der Waals equation for 1 mole of CO_{2} occupying a volume of $381 \times 10^{-6} \mathrm{~m}^{3}$ at $40^{\circ} \mathrm{C}$.

Data: $\mathrm{a}=0.3646 \mathrm{~Pa}\left(\mathrm{~m}^{3}\right)^{2} / \mathrm{mol}^{2} ; \mathrm{b}=4.28 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{mol}$

(OR)

11. (b) (i) A gas mixture contains 0.274 kmol of $\mathrm{HCl}, 0.337 \mathrm{kmol}$ of N_{2} and 0.089 kmol of O_{2}. Calculate the Average molecular weight of the gas, partial pressure of each component and the volume occupied by this mixture at 405.3 kPa and 303 K .
(ii) A gas mixture has the following composition by volume: $\mathrm{SO}_{2}-8.5 \%, \mathrm{O}_{2}-10 \%$ and the remaining N_{2}.

Estimate the composition by weight and the density of the gas mixture at a temperature of 473 K and 202.65 kPa gauge pressure.
12. (a) Methanol is produced by the reaction of CO with H_{2} according to the equation $\mathrm{CO}+2 \mathrm{H}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}$. Only 20% of the CO entering the reactor is converted to methanol. The methanol product is condensed and separated from the unreacted gases, which are recycled. The feed to the reactor contains 2 kmoles of H_{2} for 1 kmol of CO . The fresh feed enters at $35^{\circ} \mathrm{C}$ and 300 atm . Estimate the volume of fresh feed gas and recycle ratio to produce $6000 \mathrm{~kg} / \mathrm{h}$ of methanol.

(OR)

12. (b) Wet solids containing 50% water and 50% solids are to be dried to get solids with 5% water by weight. Fresh air contains 0.0010 kg water vapour per kg of dry air and the air leaving the dryer contains 0.05 kg water vapour per kg dry air. If 100 kg of dry air enters the dryer for every kg of dry solids, calculate the quantity of fresh air, the fraction of the air recirculated and the recycle ratio.
(7) 13
(7) 13
(7) 13
(7) 13
13. (a) An air - water sample has a dry bulb temperature of $50^{\circ} \mathrm{C}$ and a wet bulb temperature of $35^{\circ} \mathrm{C}$. Estimate the following properties at a total pressure of 1 atm .
i) kg of water vapour $/ \mathrm{kg}$ of dry air
ii) \% humidity
iii) \% relative saturation iv) Dew point v) Humid heat
vi) Enthalpy in $\mathrm{kJ} / \mathrm{kg}$ dry air vii) Humid volume.

Data: Vapour pressure of water at $50^{\circ} \mathrm{C}=92.51 \mathrm{~mm} \mathrm{Hg}$

$$
\lambda_{0}=2502 \mathrm{~kJ} / \mathrm{kg}
$$

(OR)

13. (b) An air - water vapour mixture has a relative humidity of 80% at 293 K and 100 kPa pressure. Calculate the following:
i) Molal humidity of the air.
ii) Molal humidity of air if its temperature is reduced to 283 K and the pressure is increased to 174.65 kPa condensing out some water.
iii) The weight of the water condensed from 500 kg of original wet air.
iv) Final volume of the wet air at after condensation of water vapour.
14. (a) A natural gas has the following composition on mole basis: $\mathrm{CH}_{4}-84 \%$, $\mathrm{C}_{2} \mathrm{H}_{6}-13 \%$ and $\mathrm{N}_{2}-3 \%$. Formulate an empirical expression for heat to be added and calculate the heat to be added to raise the temperature of 10 kmol of natural gas from 298 K to 523 K using heat capacity data given below.
$\mathrm{Cp}^{\circ}=\mathrm{a}+\mathrm{bT}+\mathrm{CT}^{2}+\mathrm{dT}^{3}, \mathrm{~kJ} / \mathrm{kmol} . \mathrm{K}$

Gas	a	$\mathrm{b} \times 10^{3}$	$\mathrm{c} \times 10^{6}$	$\mathrm{~d} \times 10^{9}$
CH_{4}	19.2494	52.1135	11.973	-11.3173
$\mathrm{C}_{2} \mathrm{H}_{6}$	5.4129	178.0872	-67.3749	8.7149
$\mathrm{~N}_{2}$	29.5909	-5.141	13.1829	-4.968

14. (b) Formulate an empirical expression relating the heat of reaction and the temperature of the reaction for the gas phase oxidation of sulphur-di-oxide to sulphur-tri-oxide. Using the same expression, calculate the heat of reaction at 773 K .
Data: $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ of SO_{3} and SO_{2} are -395720 and $-296810 \mathrm{~kJ} / \mathrm{kmol}$ respectively.
$\mathrm{Cp}^{\circ}=\mathrm{a}+\mathrm{bT}+\mathrm{CT}^{2}+\mathrm{dT}^{3}, \mathrm{~kJ} / \mathrm{kmol} . \mathrm{K}$

Gas	a	$\mathrm{b} \times 10^{3}$	$\mathrm{c} \times 10^{6}$	$\mathrm{~d} \times 10^{9}$
SO_{3}	22.036	121.624	-91.867	24.369
SO_{2}	24.771	62.948	-44.258	11.122
O_{2}	26.026	11.755	-2.343	-0.562

15. (a) A fuel gas contains 70% methane, 20% ethane and 10% oxygen. The fuel - air mixture contains 200% excess oxygen before combustion. 10% of the hydrocarbon remains unburnt. 90% of the total carbon burnt forms CO_{2} and the rest forms CO. Analyze the composition of the flue gas on wet and dry basis.

(OR)

15. (b) The ultimate analysis of a coal sample is given below

Carbon -61.5%, Hydrogen -3.5%, Sulphur -0.4%, ash -14.2%, nitrogen -1.8% and rest oxygen. Determine the theoretical oxygen requirement, theoretical dry air requirement per unit weight of coal. Analyze the composition of flue gas when coal is burned with 90% excess dry air by Orsat method.

PART- C (1x 10=10Marks)

(Q.No. 16 is compulsory)
16. Estimate the theoretical flame temperature of a gas containing $20 \% \mathrm{CO}$ and $80 \% \mathrm{~N}_{2}$ when burnt with 100% excess air. Both air and gas are initially at $25^{\circ} \mathrm{C}$.
Data:
$\mathrm{C}_{\mathrm{p}} \mathrm{CO}_{2}=6.339+10.14 \times 10^{-3} \mathrm{~T}-3.415 \times 10^{-6} \mathrm{~T}^{2}$
$\mathrm{C}_{\mathrm{p}} \mathrm{O}_{2}=6.117+3167 \times 10^{-3} \mathrm{~T}-1.005 \times 10^{-6} \mathrm{~T}^{2}$
$\mathrm{C}_{\mathrm{p}} \mathrm{N}_{2}=6.457+1.389 \times 10^{-3} \mathrm{~T}-0.069 \times 10^{-6} \mathrm{~T}^{2}$
$\Delta H_{\text {rxn }}$ at $25^{\circ} \mathrm{C}=-67,636 \mathrm{~kJ}$

