Reg. No.

B.E./ B.TECH. DEGREE EXAMINATIONS, MAY 2023

Third Semester

CH18305 – APPLIED CHEMISTRY

Chemical Engineering

(Regulation2018/2018A)

TIME:3 HOURS

MAX. MARKS: 100

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Apply the principles of Surface Chemistry in various fields such as Pollution abatement, Catalysis.	3
CO 2	Infer the bond order and the bond strength of molecules.	4
CO 3	Apply the Distribution Law in solvent extractions.	3
CO 4	Perform asymmetric synthesis and resolution.	3
CO 5	Handle the air sensitive compounds in organic reactions.	3

PART- A (10x2=20Marks)

(Answer all Questions)

		СО	RBT
			LEVEL
1.	Distinguish absorption and adsorption.	1	2
2.	Define adsorption isotherm?	1	2
3.	Write the bond order for hydrogen fluoride.	2	1
4.	How a coordination bond is formed?	2	1
5.	Write the Nernst distribution law.	3	1
6.	Mention an example for solute association in a solvent phase.	3	1
7.	Draw the Newman projection of eclipsed conformation for ethane.	4	2
8.	What are enantiomers?	4	2
9.	Write an example for Clemmenson reduction.	5	1
10.	Write the preparation of a phosphorous ylide.	5	1

PART-B (5x 14=70Marks)

			Marks	CO	RBT
					LEVEL
11. (a)	(i)	Derive the Langmuir adsorption equation.	(7)	1	3
	(ii)	Distinguish between the physical and chemical adsorption.	(7)	1	3

(OR)

(b)	Elaborate the application of the phenomena adsorption in pollution abatement.	(14)	1	3
12. (a)	(i) Outline the postulates of molecular orbital theory.	(7)	2	4
	(ii) Discuss and analyze the electronic spectrum of chlorophyll.	(7)	2	4
	(OR)			
(b)	(i) Illustrate the molecular orbital diagram of nitrogen.	(7)	2	4
	(ii) Explain the various absorptions in the electronic spectrum of heamoglobin.	(7)	2	4
	noumogroom			
13. (a)	(i) Explain the determination of partition coefficient of iodine in carbon tetrachloride and water.	(7)	3	3
	(ii) Explain the conditions for the validity of Nernst distribution law.	(7)	3	3
	(OR)			
(b)	(i) Apply the modified Nernst distribution law for the solute interaction	(7)	3	3
	with the solvent.			
	(ii) Explain the application of Nernst distribution law in the solvent	(7)	3	3
	extraction process.			
14. (a)	Analyze the conformation of substituted cyclohexane.	(14)	4	4
	(OR)			
(b)	Explain briefly about the resolution of racemic mixture into the enantiomeric components.	(14)	4	4
15. (a)	(i) Explain in detail about the Mannich reaction with an example.	(7)	5	3
	(ii) Explain the decreasing of the length of a carbon chain by one unit with	(7)	5	3
	Hunsdiecker reaction.			
	(OR)			
(b)	(i) Explain briefly the steps in Birch reduction.	(7)	5	3
	(ii) Deduce the mechanism of Prins reaction.	(7)	5	3
	<u>PART- C (1x 10=10Marks)</u> (Q.No.16 is compulsory)			
	(2.1.0.10 is computed))	Marks	CO	RBT LEVEL
16.	Explain in detail about the conversion of an alkene to alcohol by	(10)	5	5
	hydroboration-oxidation reaction?			

hydroboration-oxidation reaction?