PART- B (5x 14=70Marks)

B.E./ B.TECH. DEGREE EXAMINATIONS, MAY 2023
 Fourth Semester
 CH18401 - MECHANICAL OPERATIONS (Regulation-2018 / 2018A)

TIME:3 HOURS

MAX. MARKS: 100

COURSE OUTCOMES

RBT
LEVEL
CO 1 Impart the basic knowledge on the solid handling characteristics and mixed particle size analysis through screening.
CO 2 Estimate the power requirement for various comminution through the Laws of size 5 reduction; along with the design of size reduction equipments.
CO 3 Classify various solid separation techniques through settling and basic knowledge on such 4 equipment design.
CO 4 Apply the principles of filtration, mixing, conveying and storage of solids with related 3 calculations for design of such equipments.
CO 5 Select the mechanical operation equipments with and without involving fluid mechanics 5 principles.

PART- A(10x2=20Marks)

(Answer all Questions)
2. Define: Shape factor. $\quad 1 \quad 1$
3. The diameter of ball mill is 1100 mm and it is charged with 80 mm balls. Find the critical $\quad \mathbf{2} \quad \boldsymbol{2}$ speed of the ball mill.
$\begin{array}{lll}\text { 4. List the four main principles involved in size reduction equipments. } & \mathbf{2} \quad \mathbf{2}\end{array}$
5. Outline about terminal settling velocity. $\quad \mathbf{3} \quad 2$
6. Mention the forces acting on the fluid, when the solid particle is allowed to settle. $\mathbf{3} \quad \mathbf{2}$
7. State any two requirements of filter media. 4
8. Classify filters on the basis of mechanism 4
9. Distinguish between mixing and agitation with an example. $\mathbf{5} \boldsymbol{2}$
10. Summarize the industrial applications of belt conveyors used in process industries. $\mathbf{5} \boldsymbol{2}$
changed to 4 mm . Assume the mechanical efficiency remains constant and Rittinger's law holds good.
(ii) In a certain jaw crusher, it is necessary to apply a maximum force of 20 tons at a point of toggle block. The toggle block is 135 cm from the pivot. The angle between pitman and toggle bar is 80° maximum. Determine the force on the pitman when the moving jaw is closer to the fixed jaw? Also determine the force on the particle at a distance of 35 cm from the pivot.
13. (a) (i) A mixture of silica (Sp.gr. 2.56) and galena (Sp.gr. 7.5) particles ranging from sizes of 0.0068 cm to 0.0562 cm are to be separated by a rising stream of water

Determine the velocity of water flow will give an un-contaminated product of galena and the size range of product?
(ii) A falling ball viscometer operates by timing the fall of a steel ball with a diameter of 0.45 cm and density of $9000 \mathrm{Kg} / \mathrm{m}^{3}$. The steel ball falls a distance of 40 cm . Determine the viscosity of oil if the time of fall is 5 sec. Justify the selection equation. Density of oil $=900 \mathrm{Kg} / \mathrm{m}^{3}$

(OR)

(b) (i) Derive the one dimensional terminal settling equation at various ranges of particle Reynolds number.
(ii) With a neat sketch explain the working of Dorr thickener and its applications in various industries.
14. (a) Develop the following Kozeny-Carman equation as a starting point to find the overall pressure drop through filter cake.

$$
\frac{\Delta p}{L}=\frac{150 \bar{V}_{0} \mu}{g_{c} \Phi_{s}^{2} D_{p}^{2}} \frac{(1-\varepsilon)^{2}}{\varepsilon^{3}}
$$

(OR)

(b) (i) Analyse the equipment using high static electrical potential difference to separate dust particles from industrial emissions.
(ii) Suggest a filter working under high pressures and minimum labor (7) 44 requirement with neat sketch.
15. (a) (i) Indicate the various types of impellers and explain any two in detail.
(ii) Analyse the methods involved in prevention of swirling.

(OR)

(b) (i) Explain in detail with neat sketch about bin, hopper and silo.
(ii) With a neat sketch explain chain and pneumatic conveyors.

$\frac{\text { PART-C (} \mathbf{1 x ~ 1 0}=\mathbf{1 0 M a r k s)}}{\text { (Q.No. } 16 \text { is compulsory) }}$

Marks CO RBT LEVEL in diameter, the turbine is 1.0 m in diater and is position 1.0 m from the bottom of the tank. The turbine blades are 160 mm wide. The tank is filled with a depth of 3.0 m with a solution of 75% caustic soda at $60.3^{\circ} \mathrm{C}$, which has the viscosity of 12 cP and a density of $1498 \mathrm{~kg} / \mathrm{m}^{3}$. The turbine is operated at 75 rpm.
(a) Determine the power will be required to operate the mixer if the tank was baffled. Assume $\mathrm{K}_{\mathrm{T}}=\mathrm{Np}=5.8$
(b) Also evaluate power will be required to operate the mixer if the tank was unbaffled. Take $\mathrm{Np}=1.05$

