	Q. Code: 909758						
	Reg. No.						
	B. E / B. TECH.DEGREE EXAMINATIONS, MAY 202 Fourth Semester CH18402 – HEAT TRANSFER (Chemical Engineering) (Regulation 2018A)	23			12. (a)	(i) (ii)	Using Buckingham π theorem, show that the convection Explain the dimensionless number used significance
	(Heat and Mass Transfer Data Book is permitted)						(OR)
TIME:3 HOURSMAX. MCO1Impart knowledge on the various modes of heat transfer.CO2Apply convective heat transfer concept to fluids without phase change.CO3Develop the ability to model and analyze heat transfer processesCO4Augment the capability to solve heat transfer problems.CO5Design and analyze various types of heat exchangers.			MARKS: 100		(b) (i	(i)	A vertical pipe of 120 mm outer diame room. Where, air is at 298K (25 ^o C). Cal- free convection per meter length of th temperature is 393K (120 ^o C).
	PART- A(10x2=20Marks)					(ii)	A steam pipe 50mm diameter and 3.
	(Answer all Questions)		CO	RBT LEVEL			horizontally and exposed to still air temperature is 295°C, determine the rate
1.	State Fourier's Law of conduction.		1	2			temperature of 180°C.
2.	Define thermal conductivity and write its unit.		1	2			
3.	Establish relationship between Overall heat transfer coefficient and individual here transfer coefficient.	eat	2	3	13. (a)	(i) (ii)	Explain with neat sketches, the various flo Water is to be boiled at atmospheric
4.	Differentiate natural convection and forced convection with examples.		2	2			polished stainless steel pan placed on top
5.	Compare boiling and evaporation.		3	2			surface of the bottom of the pan is maintai
6.	Explain Burnout Phenomenon.		3	2			of the bottom of the pan is 40 cm, det
7.	Contrast absorptivity and emissivity of a radiating surface.		4	2			transfer to the water and (b) the rate of eva
8.	Compare single and multiple effect evaporator.		4	2			(OR)
9.	Mention the significance of Logarithmic Mean Temperature Difference.		5	2	(b)	(i)	Discuss the film condensation and
10.	Sketch the flow pattern of a Plate heat exchanger highlighting its compactness.		5	3			phenomena highlighting their major diffe
	PART- B (5x 14=70Marks)	Marks	CO	RBT LEVEL		(ii)	Dry steam at 383 K condenses on the ou pipe of 25 mm O.D. The pipe surface circulating water through it. Determin
11. (a) Derive the equation to find out the rate of heat transfer by conduction in a	(14)	1	3			coefficient, heat transfer per unit length
	composite wall made of three layers of different materials with one-side is at						per unit length of pipe. The properties
	higher temperature and the other side is at lower temperature.						temperature of 350 K are as follows:
	(OR)						$\mu = 306 \times 10^{-6} \text{ Ns/m}^2$, k = 0.668 W/(m]
(b	Derive the steady state heat conduction equation for a cylinder and discuss the temperature distribution for a composite cylindrical wall.	(14)	1	3			kJ/kg

2

hat the $Nu = f(Re, Pr)$ for forced	(8)	2	3
ed in heat transfer and give its	(6)	2	3
DR)			
meter and length 3.2 m is in a	(8)	2	3
Calculate the rate of heat loss by			
f the pipe, if the pipe surface			
3.5m long has been placed	(6)	2	3
ir at 20° C. If the pipe wall			
rate of heat loss. At the mean			
	(0)	2	2
flow boiling regimes.	(8)	3	3
ric pressure in a mechanically	(6)	3	3
top of a heating unit. The inner			
ntained at 110°C. If the diameter			
determine (a) the rate of heat			
evaporation of water.			
DR)		•	•
and drop wise condensation	(8)	3	3
ifferences.		2	2
e outside surface of a horizontal	(6)	3	3
ace is maintained at 352 K by			
rmine the mean heat transfer			
gth of pipe and condensate rate			
rties of condensate at the film			

(m K), $\rho = 974 \text{ kg/m}^3$, $\lambda = 2225$

14. (a) Derive the equation for heat transfer between infinitely long grey bodies (14) 4 3 placed opposite to each other having temperatures T₁ and T₂, with emissivities e₁ and e₂

(OR)

- (b) Explain any two types of evaporator with a neat sketch and mention its
 (14) 4 3
 merits. and demerits.
- 15. (a) Water at the rate of 5 kg/s is heated from 35° C to 60° C in a shell and tube (14) 5 3 heat exchanger. The water is to flow inside tubes of 2 cm diameter with an average velocity of 40 cm/s. hot water available at 95° C and at the rate of 2.0 kg/s is used as the heating medium on the shell side. If the length of the tubes must not be more than 2 m calculate the number of tube passes, the number of tubes per pass and the length of the tubes for one pass shell, assuming U_o = 1500 W/m²K.

(OR)

(b) A refrigerator is designed to cool 260kg/h of hot liquid of specific heat (14) 5 3350J/kg K at 120°C using a parallel flow arrangement. 1100kg/h of cooling water is available for cooling purposes at a temperature of 10°C. If the overall heat transfer coefficient is 1160W/m²K and the surface area of the heat exchanger is 0.25m², calculate the outlet temperatures of the cooled liquid and water and also the effectiveness of the heat exchanger.

PART- C (1x 10=10Marks)

(Q.No.16 is compulsory)

Marks CO RBT LEVEL

3

16. You are provided with a task of designing a heat transfer equipment for a (10) 3 5 process application Assess the effect of providing different types of fins and insulation.

Q. Code: 909758