Reg. No.

B. E / B. TECH. DEGREE EXAMINATIONS, MAY 2023 Fourth Semester **CH18405-INSTRUMENTAL METHODS OF ANALYSIS** (Chemical Engineering) (Regulation 2018A)

TIME:3 HOURS

- CO1 Acquire knowledge on the fundamental concepts and various terms in electromagnetic radiations and absorption spectroscopy.
- Arrive at the knowledge in the various analytical instruments which are based on electrical **CO2** property of compounds.
- CO3 Obtain familiarity on various properties of liquid materials and the instruments used to measure these properties.
- **CO4** Investigate the applications of spectroscopic techniques in Chemical Industry.
- CO5 Obtain the awareness in the modern techniques which are used in nanoscience.

PART- A (10x2=20Marks)

(Answer all Questions)

		CO	RBT LEVEL
1	Sketch an electromagnetic spectrum highlighting the wavelength and energy.	1	2
2	State Beer Lambert's Law.	1	2
3	List the advantages and disadvantages of electro analytical methods.	2	1
4	Distinguish between the equivalent and molecular conductance.	2	1
5	Interpret the significance of Scheibe-Lomak in equation.	3	2
6	Show the working of a hollow cathode lamp.	3	2
7	Compare shielded and unshielded nucleus.	4	1
8	Enumerate the chemical shift phenomenon in nuclear magnetic resonance.	4	1
9	Highlight the principle of position sensitive photo detector.	5	2
10	State Mosley's law with its significance.	5	1

PART- B (5x 14=70Marks)

(Restrict to a maximum of TWO subdivisions)

				LEVEL
11(a)	Demonstrate the characterization instrument which gives result as shown	(14)	1	3
	below. Describe its working principle and instrumentation using a neat			
	diagram.			

MAX.MARKS: 100

СО

Marks

RBT

(**O**R)

	(OK)			
11(b) Explain the following: Estimation of Iron & Nickel by Calorimetry.	(14)	1	3
12(a) Illustrate the different types of Conductometric titrations based on the strength of acid and base.	(14)	2	3
	(OR)			
12(b) Write in detail the components, principle, types and applications of Potentiometric analysis.	(14)	2	3
13(a) Explain the principle, working and applications of Atomic Absorption Spectroscopy using a neat schematic diagram.	(14)	3	4
	(OR)			
13(b) Illustrate the mechanism of photon emission in Inductively coupled plasma -atomic emission spectroscopy and discuss its advantage over flame photometry.	(14)	3	4
14(a) Explain the working principle of mass spectrometer and discuss the various ionization methods used in it.	(14)	4	4
	(OR)			
14(b) Explain the working of nuclear magnetic resonance spectrometer using a neat diagram.	(14)	4	4
15(a) Illustrate the working of X-ray diffraction instrument for the analysis of crystalline solids.	(14)	5	3
	OR			
15(b) Explain the principle, working and applications of scanning tunnelling microscopy using a neat schematic diagram.	(14)	5	3
	<u>PART- C (1x 10=10Marks)</u>			
	(Q.No.16 is compulsory)			
		Marks	CO	RBT
16	Explain in detail the working principle and instrumentation of the optical analytical instrument that uses refraction of light.	(10)	2	LEVEL 5
