	Q. Cod	e: 43	87366		
	Reg. No.				PART- B (5x 13
	B.E. / B. TECH DEGREE EXAMINATION, MAY 2022 Fifth Semester CH18502 - CHEMICAL REACTION ENGINEERING I			11(a)	Derive an integrated rate expression for first process.
	(Chemical Engineering) (Regulation 2018)			11(b)	(i) Discuss constant pressure batch reactor s
T II 100	ME: 3 HOURS MAX.N	MARI	KS:	(-)	equation of variable volume system.(ii) Describe half life period of a reaction and order reaction.
CO1	Attain familiarity in the fundamentals of reaction engineering and analyze the kin	etic	data, to		
CO2 CO3	 determine the rate of reaction. Perform calculations associated with design equation of reactors and determine the volu a reactor for a given conversion and vice-versa for single reactions. Evaluate systems and perform calculations for multiple reactions, to suggest reactor/co 	ıme o mbin	of ation of	12(a)	Using a color indicator which shows a concentration of A falls below 0.12 mol/l, inverted to explore the kinetics of the deco
CO4	reactors for the yield of desired product. Investigate the temperature effects associated with the reactors during reaction ar	nd de	termine		CSTRs in series, each having a volume of 400 occurs in the first reactor(a single reactor) for a
CO5	conversion. Explore the various non-idealities in the real reactors and modeling suitable reactors inco effects of various non-idealities.	orpora	ting the		and in the second reactor in series (a two reactor 55 cm ³ /min. Find a rate equation which sat
	PART- A (10x2=20Marks)				decomposition of A.
	(Answer all Questions)	CO	RBT	12(b)	A plug flow reactor (2 m^3) processes an agu
1	For the reaction $2A \rightarrow P$, find the ϵA .	1	LEVEL 3		containing reactant A (CA0 =100 mmol/liter). $'$
2	For a certain first order reaction, rate constant is 0.0022 s^{-1} . Calculate the half life of the reaction.	1	3		respectively. First find the equilibrium conversion of A in the reactor.
3	Show the CSTR's in series approximate a PFR graphically.	2	2		
4	Liquid A decomposes by first order kinetics and in a batch reactor 60% of A is converted	2	3		
	in 8 min run. Calculate the time required for it to reach 72% conversion?			13(a)	Assess qualitatively with examples about the
5	Compare selectivity and yield in multiple reactions.	3	2		Parallel reactions.
6	Give your comments on the product ratio r_R/r_S for maximising the formation of R in the	3	2		(OR)
	P+Q →R (Desired reaction), $r_R = 14 \exp(-273/T).C_P^{0.5}.C_Q$ P+Q →S (Undesired reaction), $r_S = 200 \exp(-200/T).C_P.C_Q$			13(b)	Consider the aqueous reaction
7	Relate Gibbs free energy change and Equilibrium constant.	4	2		R, desired $\frac{dC_{\rm R}}{dt} = 1.0 C_{\rm A}^{1.5} C_{\rm B}^{0.3}$, mol/li
8	Find the equilibrium constant (K _{298K}) of reaction A forming R, if $\Delta G_{0,298K} = -14130$ L/mol	4	3		A + B S, unwanted $\frac{dC_s}{dt} = 1.0 C_A^{0.5} C_B^{1.8}$, mol/h
9	Draw exit age distribution curve for nonideal flow.	5	2		conversion of A, evaluate the concentration of Equal volumetric flow rates of A and B are fed
10	.List the effect of earliness and lateness of mixing of fluid on kinetics of the reaction.	5	2		stream has a concentration of 20 mol/litre of

2

5x 13=65Marks)

	Marks	CO	RBT LEVEL
first order variable volume	(14)	1	3
DR) tor system and derive the rate	(7)	1	3
and derive the half life of first	(7)	1	3
a color change when the dl/l , the following scheme is decomposition of A. A feed into the first of the two ideal f 400 cm ³ . The color changes for a feed rate of 12 cm ³ /min, eactor set up) for a feed rate of h satisfactorily represents the	(14)	2	3
DR) aqueous feed (100 liter/min) er). This reaction is reversible k_2 are 0.04 and 0.01 min ⁻¹ version and then find the actual	(14)	2	3
t the product distribution for	(14)	3	3

mol/liter.min

mol/liter-min 84% For on of R in the product stream. re fed into the reactor, and each re of reactant. The flow in the

Q. Code: 437366

	reactor follows			
	 i. Plug flow ii. Mixed flow iii. The best set-up of Plug – Mixed Contacting schemes 	(5) (5) (4)	3	3
14(a)	Explain the concept of optimum temperature progression and graphical design procedure to design the reactor.	(14)	4	3
	(OR)			
14(b)	An irreversible isomerisation reaction is carried out in the liquid phase in a MFR. Rate constant at 165°C is 0.7 h-1; Activation Energy is 120000 J/mol; Heat of Reaction is -350 kJ/kg; Heat capacity of reactants and products is 1.96 kJ/ kg.K; Volumetric flow rate is 0.33 m3 /h; Feed Temperature is 20°C; Conversion expected is 95%. Calculate the reactor size and temperature of the reaction mixture if the reactor is operated adiabatically.	(14)	4	3
15(a)	For a Non-ideal reactor described by N-Tank's in series model derive an expression for Exit age distribution $E(t)$ and $E(\theta)$	(14)	5	3
	(OR)			
15(b)	Following results were obtained for a pulse test on a piece of reaction equipment. The output concentration rose linearly from zero to 0.5 μ mol/dm ³ in 5 min, and then fell linearly to zero in 10 min after reaching a maximum value of 0.5 μ mol/dm ³ .			
	(i) Calculate the mean residence time.	(7)	5	3
	(ii) (ii) Calculate the total reactor volume if the flow rate is 570 l/min	(7)		

PART- C (1x 10 =10 Marks)

		Marks	CO	RBT LEVEL
16	For any reactions of positive order, tubular reactor is the best. Create a model by your own example and derive the respective performance equation.		2	5

Q. Code: 437366

4