Reg. No.

B.E / B.TECH. CHEMICAL ENGINEERING, MAY 2023

 Fifth SemesterCH18503 - CHEMICAL ENGINEERING THERMODYNAMICS-II (Chemical Engineering)

(Regulation 2018 / Regulation 2018A)

TIME: 3 HOURS

MAX. MARKS: 100

CO 1 Identify the property of solutions upon mixing and also about the excess property
CO 2 Explore and generate the phase diagram data and also about the effect of temperature and pressure on azeotropic conditions
CO 3 Impart knowledge on various models used to evaluate the equilibrium data and also to test the thermodynamic consistency
CO 4 Identify and calculate the equilibrium constant for various systems and analysis of simultaneous reactions
CO 5 Apply principles of refrigeration and its application

PART- A (10 x $2=\mathbf{2 0}$ Marks)

(Answer all Questions)
2. Highlight the various methods available for determining Partial Molar Properties. 1
3. Distinguish between minimum boiling and maximum boiling azeotropes. $\mathbf{2}$
4. Cite Raoults law and its applicability. $\quad \mathbf{2} \quad \mathbf{2}$
5. Which is the most reliable method for testing the consistency of experimental VLE $\quad \mathbf{3} \quad \mathbf{2}$ data?
6. Enumerate the difference between Activity Composition models and Local composition $\mathbf{3} \quad \mathbf{2}$ models.
7. Mention the effect of temperature on Reaction Equilibrium constant? $\mathbf{4} \quad \mathbf{2}$
8. Interpret the term "feasibility of a reaction" $\quad \mathbf{4} \quad \mathbf{2}$
9. Infer the efficiency of actual refrigeration cycles is less than Carnot's cycle? $\quad \mathbf{5} \quad \mathbf{2}$
10. Mention any two comparisons between Joule - Thomson and Isentropic cooling. $\mathbf{5}$

PART- B (5 x $14=70$ Marks)

$\underset{\text { ks }}{\text { Mar }} \quad$ CO $\underset{\text { LEV }}{\text { LBT }}$
11(a) Derive the Gibbs Duhem equation relating the Molar and Partial Molar property (14) $\mathbf{1}$ and write down the significances.

(OR)

(b) (i) Show that when Henry's law is applicable for component 1 in a binary
(7) 12 solution over certain concentration range, Lewis- Randall rule is applicable for component 2 over the same concentration range.
(ii) At 300 K and 1 bar the volumetric data for a liquid mixture of benzene and cyclohexane are represented by
$\mathrm{V}=101.4 \times 10^{-6}-15.8 \times 10^{-6} \mathrm{X}-2.64 \times 10^{-6} \mathrm{X}^{2}$
where X is the mole fraction of the benzene and V has the units of $\mathrm{m}^{3} / \mathrm{mol}$. Find the expressions for the partial molar volumes of benzene and cyclohexane.
12.(a) Distinguish between minimum boiling and maximum boiling azeotropes with the (14) 2 help of phase diagrams.

(OR)

(b) Compare the equilibrium diagram on ternary co-ordinates for type I and type II (14) $\mathbf{2} \quad \mathbf{2}$ systems
13. (a) A mixture contains 45% (mol) methanol (A), 30% (mol) ethanol (B) and the rest n-propanol (C). Liquid solution may be assumed to be an ideal and perfect gas law is valid for the vapour phase. Calculate at a total pressure of 101.3 kPa .
a. The bubble point and the vapourcomposition
b. The dew point and the liquidcomposition.

The vapour pressures of the pure liquids are given below

Temperature, K	333	343	353	363
$\mathrm{P}_{\mathrm{A}}, \mathrm{kPa}$	81.97	133.29	186.61	266.58
$\mathrm{P}_{\mathrm{B}}, \mathrm{kPa}$	49.32	73.31	106.63	166.61
$\mathrm{P}_{\mathrm{C}}, \mathrm{kPa}$	39.32	62.65	93.30	133.29

(OR)
(b) For the given data check whether the system is consistent or not?
(14) 3

X_{1}	0	0.2	0.4	0.6	0.8	1.0
γ_{1}	0.576	0.655	0.748	0.856	0.95	1.0
γ_{2}	1.0	0.985	0.930	0.814	0.626	0.379

14. (a) In the synthesis of ammonia, stoichiometric amounts of nitrogen and hydrogen are sent to a reactor where the following reaction occurs

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \quad=====2 \mathrm{NH}_{3}
$$

The equilibrium constant for the reaction at 675 K may be taken as 2×10^{-4}
(a) Determine the per cent conversion of nitrogen to ammonia at 675 K and 20 bar.
(b) What would be the conversion at 675 K and 200 bar?

(OR)

(b) (i) A gas mixture containing $4 \mathrm{~mol} \mathrm{CO}_{2}, 6 \mathrm{~mol} \mathrm{H}_{2}$ and 3 mol water is
undergoing the following reactions
$\mathrm{CO}_{2}+3 \mathrm{H}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H} 2 \mathrm{O}$
$\mathrm{CO}_{2}+3 \mathrm{H}_{2} \longrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$
Develop expressions for the mole fraction of the species in terms of the extent of reaction.
(ii) The standard heat of formation and standard free energy of formation of ammonia at 298 K are $-46,100 \mathrm{~J} / \mathrm{mol}$ and $-16,500 \mathrm{~J} / \mathrm{mol}$ respectively. Analyze the equilibrium constant for the reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
at 500 K . Assuming that the standard heat of reaction is constant in the temperature range 298 to 500 K .
15. (a) Differentiate Linde and Claude process for air liquefaction with neat sketches.

(OR)

(b) Vapor compression refrigeration system rated at 5 tons is employed in a chemical $-10^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$ respectively. The isentropic efficiency of compressor is 85%.

Enthalpy of saturated liquid at $35^{\circ} \mathrm{C}$ is $69.5 \mathrm{~K} \mathrm{KJ} / \mathrm{Kg}$. The enthalpy of super heated vapor is $208.3 \mathrm{KJ} / \mathrm{Kg}$.

Determine

(i) Mass flow rate of the refrigerant
(ii) Power consumption of the compressor
(iii) Amount of heat rejected in the compressor

Difference in COP between vapor-compression and Carnot cycle.

PART- C ($1 \times 10=10$ Marks)

(Q.No. 16 is compulsory)
16. Methanol is produced by the following reaction $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$

The standard heat of formation of $\mathrm{CO}(\mathrm{g})$ and $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ at 298 K are $(-110,500) \mathrm{J} / \mathrm{mol}$ and $(-200,700) \mathrm{J} / \mathrm{mol}$ respectively. The standard free energies of formation are $(-137,200) \mathrm{J} / \mathrm{mol}$ and $162,000 \mathrm{~J} / \mathrm{mol}$ respectively.
i) Calculate the standard free energy change and determine whether the reaction is feasible at 298 K .
ii) Determine the equilibrium constant at 400 K assuming that the heat of reaction is constant.
iii) Derive an expression for standard free energy of reaction as function of temperature if the specific heats of the components are:
$\mathrm{Cp}: 3.376 \mathrm{R}+0.557 * 10^{-3} \mathrm{RT}-0.031 * 10^{5} \mathrm{RT}^{-2}$ for CO
$\mathrm{Cp}: 3.249 \mathrm{R}+0.422 * 10^{-3} \mathrm{RT}+0.083 * 10^{5} \mathrm{RT}^{-2}$ for H_{2}
$\mathrm{Cp}: 2.211 \mathrm{R}+12.216 * 10^{-3} \mathrm{RT}-3.450 * 10^{-6} \mathrm{RT}^{2}$ for $\mathrm{CH}_{3} \mathrm{OH}$

