Reg. No. \square

B.E. / B.TECH. DEGREE EXAMINATION, MAY 2023

Sixth Semester

CH18604-PROCESS EQUIPMENT DESIGN I

(Chemical Engineering)
(Regulation 2018)
(Mass and Heat Transfer Data book should be provided)

TIME: 3 HOURS

CO1 Impart knowledge on the importance of design information and data
CO2 Identify the methods of process design of separation columns.
CO3 Impart the basics of process design of heat transfer equipments.
CO4 Outline the essentials of fluid movers and related items.
CO5 Evaluate the concepts of piping and instrumentation diagram and site selection.

PART- A (10x2=20Marks)

(Answer all Questions)

		CO	Level
1	Evaluate the surface tension of pure methanol at $21^{\circ} \mathrm{C}$, density $801.7 \mathrm{~kg} / \mathrm{m}^{3}$, molecular weight 32.156 .	1	3
2	Compare PPDS and DIPPR used in data collection.	1	2
3	If $\mathrm{Rmin}=1.5$ and $\mathrm{xD}=0.96$, calculate the intercept of enriching line.	2	3
4	Estimate the distribution coefficient for transferring acetone from water to benzene at $30^{\circ} \mathrm{C}$. A/RT value for acetone/water and acetone/benzene is 2.21 and 0.543 respectively.	2	3
5	If the mass and momentum flux is increased to twice and thrice, what will be the tube side and shell side pressure drop.	3	2
6	List the points to be considered to reduce the pressure drop of 10 psi .	3	2
7	Illustrate the importance of chocking velocity.	4	3
8	Draw the plot to be used to determine the type of pump required for a particular head and flow rate.	4	2
9	List out the criterion should be followed for P \& I diagrams in process equipment design.	5	2
10	Outline a few ideas on environmental consideration in site selection.	5	2

weight 32.156 .
24 Estimate the distribution coefficient for transferring acetone from water to benzene at3 $30^{\circ} \mathrm{C}$. A/RT value for acetone/water and acetone/benzene is 2.21 and 0.543 respectively.
If the mass and momentum flux is increased to twice and thrice, what will be the tube32
7 Iluste impore2 design.
10 Outline a few ideas on environmental consideration in site selection.

PART- B (5x 13 = 65Marks)

11(a) (i) Estimate the specific heat capacity of ethyl bromide at $20^{\circ} \mathrm{C}$ using
Marks CO $\underset{\text { LEVEL }}{\text { RBT }}$
(7) 13 Cheuh and Swanson's method.
(ii) Engineering Data is an important for designing a process equipment. Is accuracy requirement necessary to design a perfect equipment?

(OR)

11(b) (i) Estimate the viscosity of toluene at $20^{\circ} \mathrm{C}$ by Gilliland's method.
(ii) As a chemical Engineer, give your views on getting sources of information on manufacturing process.

12(a) A continuous column is designed for separation of the mixture containing 0.5 mole fraction of n-heptane and rest n-octane. The overhead and the bottom product are to have 99% purity and its column is to operate at atmospheric pressure with reflux of 2.5 . Estimate the number of plates and also estimate the actual number of plates if the plate's efficiency is 50%. The feed is admitted as a saturated liquid to the column at the rate of 9 tons/hr. For the following condition find the height and diameter of the column. Given :- Top column temperature $=371 \mathrm{~K}$, Bottom coloumn temperature $=398 \mathrm{~K}$, Plate spacing $=0.45 \mathrm{~m}$, Vapour Velocity $=1.5 \mathrm{~m} / \mathrm{s}$

(OR)

12(b) Acetone is to be extracted from a solution in water, using 1,1, 2-trichloro (14) $2 \quad 3$ ethane. The feed concentration is $49 \% \mathrm{w} / \mathrm{w}$ acetone. Determine the number of stages required to reduce the concentration of acetone below 8% using 38 kg of extraction - solvent per 100 kg feed. The raffinate concentration in the first stage is $0.42 \mathrm{w} / \mathrm{w}$ basis.
The VLE data

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{}

\hline Con \& entration, W \& ht \% \& Refractive \&

\hline $$
\begin{gathered}
\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{8}(a) \\
100 X_{1}
\end{gathered}
$$ \& $$
\begin{gathered}
\text { Watere (b) } \\
100 X_{1}
\end{gathered}
$$ \& $$
\begin{gathered}
\text { Acetone }(\text { (}) \\
100 \mathrm{X}_{2}
\end{gathered}
$$ \& \&

\hline \& $$
\begin{aligned}
& 0.11 \\
& 0.26 \\
& 0.36 \\
& 0.36
\end{aligned}
$$ \& $$
\begin{aligned}
& 0.00 \\
& \begin{array}{l}
0.01 \\
5.53
\end{array}
\end{aligned}
$$ \& 1.4683 ${ }_{\text {l }}^{\text {1.488 }} 1.4504$ \& $$
\begin{aligned}
& 1.3898 \\
& 1.3787 \\
& 1.388
\end{aligned}
$$

\hline 84.65
7.58
75.58 \& $$
\begin{gathered}
0.59 \\
0.76 \\
0.99
\end{gathered}
$$ \& $$
\begin{aligned}
& 14.76 \\
& 19.76 \\
& 13.69
\end{aligned}
$$ \& 1.4416
1.4388
1.4285 \& $$
\begin{aligned}
& 1.2763 \\
& 1.2336 \\
& 1.2018
\end{aligned}
$$

\hline 70.36
67
64.52
64.17 \& 1.43
1.44
1.87
1.87 \& 28.21
31.04
33.98 \& 1.4218
1.4188
1.4139

l \& 1.6110
1.5120
1.1170

\hline 60.068
54.88
+8.78 \& 2. 21
2.18
4.08
4.01 \& 37.83
4.81
47.21 \& 1.4088
1.403

1.3972 \& | 1.0882 |
| :--- |
| 1.0592 |
| 1.0263 |
| |

\hline 43.88
$\begin{aligned} & 38 \\ & 31.81 \\ & 31.67\end{aligned}$ \& 5.00
6.84

9.78 \& $$
\begin{aligned}
& 51.12 \\
& 54.85 \\
& 58.55
\end{aligned}
$$ \& 1.3927

1.3888

1.3829 \& $$
\begin{aligned}
& 0.9991 \\
& 0.978 \\
& 0.9534
\end{aligned}
$$

\hline ${ }_{24.04}^{26.39}$ \& ${ }_{15}^{13.35}$ \& 60.26
80.59 \& 1.3792 \& 0.9386

\hline 23.20 \& 16.63 \& 60.17 \& 1.3792 \& (9). 9328

\hline 20.71
15.39

10.00 \& | 19.31 |
| :--- |
| $\begin{array}{c}26.28 \\ 34.96\end{array}$ | \& 59.98

58.33
58.04 \& 1.3758
1.3685

1.3672 \& $$
\begin{aligned}
& 0.9289 \\
& 0.9240 \\
& 0.9223
\end{aligned}
$$

\hline 9.
9
6.77
4.35 \& 35.38
4185
48.47 \& 54.99
$\begin{array}{r}51.88 \\ 47.18\end{array}$ \& 1.3672
1.3652

1.3626 \& $$
\begin{aligned}
& 0.9223 \\
& 0.9259 \\
& 0.9293
\end{aligned}
$$

\hline 2.18
1.72
1.17 \& 55.97
61.11

66.58 \& | 41.85 |
| :--- |
| $\begin{array}{l}47 \\ 37 \\ 32.25\end{array}$ |
| 17 | \& 1.3801

1.358
1.3543

1.388 \& $$
\begin{aligned}
& 0.9363 \\
& 0.945 \\
& 0.9539
\end{aligned}
$$

\hline 1.02
0.92
0.78 \& 71.80
74.54
80.40 \& 27.18
24.54
18.82 \& 1.3518
1.351
1.3460

1.3460 \& $$
\begin{aligned}
& 0.9608 \\
& 0.9647 \\
& 0.9747
\end{aligned}
$$

\hline 0.70
0.65
0.65
0.85
0.44 \& 84.94
87.63
94.66
99.56 \& 14.36
11.72
4.82

0.00 \& $$
\begin{aligned}
& 1.3430 \\
& 1.3412 \\
& 1.3362 \\
& 1.3328
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0.9797 \\
& 0.989 \\
& 0.988 \\
& 0.9984
\end{aligned}
$$
\]

\hline
\end{tabular}

13(a) Design 2-4 Shell and tube heat exchanger to cool a condensate from a methanol condensor from $110{ }^{\circ} \mathrm{C}$ to $49{ }^{\circ} \mathrm{C}$. Flow rate of methanol $110000 \mathrm{~kg} / \mathrm{h}$. Brackish water is used to be a coolant with the temperature rise from $29^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$. Mild steel is used a material of construction with the thermal conductivity $71.3 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$ The physical properties of fluids at its average temperature are

Property	TSF	SSF
$\mathrm{Cp}\left(\mathrm{KJ} / \mathrm{Kg}^{\circ} \mathrm{C}\right)$	4.2	2.84
$\mu\left(\mathrm{mNs} / \mathrm{m}^{2}\right)$	0.8	0.34
$\rho\left(\mathrm{~kg} / \mathrm{m}^{33}\right)$	995	750
$\mathrm{~K}\left(\mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}\right)$	0.59	0.19
OD of tube	24 mm	ID 18 mm
Length	4.88 m	

(OR)
13(b) Estimate the heat transfer coefficient for steam condensing on the outside and inside of $35 \mathrm{~mm} \mathrm{OD}, 28 \mathrm{~mm}$ ID, vertical tube of 5.5 m long, the steam condensate rate is $144 \mathrm{~kg} / \mathrm{h}$ per tube and the condensation takes place at 5.2 bar. Saturation temperature is $144.78^{\circ} \mathrm{C}$, Density of condensate and vapor is $935 \mathrm{~kg} / \mathrm{m}^{3}$ and $2.01 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{kc}-0.66 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$, Prandtl Number -1.65 , Viscosity of condensate is $199 \times 10-6 \mathrm{~kg} / \mathrm{m}$.s. $\mathrm{NPr}-1.18$

14(a) A tanker carrying organic fluid is unloaded, using the ship's pumps, to an on-shore storage tank. The pipeline is 460 mm internal diameter and 1900 m long. Miscellaneous losses due to fittings, valves, etc., amount to 990 equivalent pipe diameters. The maximum liquid level in the storage tank is 65.8 m above the lowest level in the ship's tanks. The ship's tanks are nitrogen blanketed and maintained at a pressure of 2.15 bar. The storage tank has a floating roof, which exerts a pressure of 1.525 bar on the liquid. The ship must unload 2250 tonnes within 4 hours to avoid demurrage charges. Estimate the power required by the pump. Take the pump efficiency as 72 per cent. Physical properties of toluene: density $954 \mathrm{~kg} / \mathrm{m}^{3}$, viscosity $0.611 \mathrm{mN} \mathrm{s} \mathrm{m}{ }^{-2}$

(OR)

14(b) A single stage double action compressor is equipped with pistons with diameter $\mathrm{d}=0.8 \mathrm{~m}$ and stroke $\mathrm{s}=0.62 \mathrm{~m}$, while dead space is $\mathrm{c}=0.043$. Compressor shaft rotates at $\mathrm{n}=200 \mathrm{rpm}$. The air inside is compressed at pressure from 0.18 MPa to 0.33 MPa and temperature $31^{\circ} \mathrm{C}$. Polytropic efficient is assumed to be 1.22 , while mechanical and adiabatic efficiency to be equal to 0.92 and 0.88 respectively.

15(a) Enumerate your views on site selection and plant location to start a new factory in your surroundings.

(OR)

15(b) Discuss in detail about site layout to erect a new pharmaceutical industry in your city.

PART- C (1x $10=10$ Marks)

16(a) Create a suitable reboilers design feasibility with commercial requirements for

(10) 3

