

## PART- B (5 x $14=70$ Marks $)$

11. (a) (i) Compute the thermal conductivities of NO and CH 4 at 300 K and atmospheric pressure from the following data for these conditions,

| Gas | $\mu \times 10^{7}(\mathrm{~g} / \mathrm{cm} . \mathrm{s})$ | $\mathrm{C}_{\mathrm{p}}(\mathrm{cal} / \mathrm{g} . \mathrm{mole} \mathrm{K})$ |
| :--- | :--- | :--- |
| NO | 1929 | 7.15 |
| $\mathrm{CH}_{4}$ | 1116 | 8.55 |

(ii) Compute the diffusivity of $\mathrm{Hg}^{203}$ in normal liquid Hg using Erying theory using the following the data and compare with experimental values.

| Temperature <br> $(\mathrm{K})$ | Experimental, <br> $\mathrm{D}_{\mathrm{AA}},(\mathrm{cm} / \mathrm{s})$ | $\mu(\mathrm{cp})$ | $\mathrm{V}\left(\mathrm{cm}^{3} / \mathrm{g}\right)$ |
| :--- | :--- | :--- | :--- |
| 275.7 | $1.52 \times 10^{-5}$ | 1.68 | 0.0736 |
| 289.6 | $1.68 \times 10^{-5}$ | 1.56 | 0.0737 |
| 364.2 | $2.57 \times 10^{-5}$ | 1.27 | 0.0748 |

(b) Compare and contrast the molecular and convective mechanisms for momentum transport; And verify that momentum per unit area per unit time has the same dimensions as force per unit area.
12. (a) Devise a meaningful sketch showing the flow pattern in arbitrary shape, which explains the components of $\tau$ and $\rho v v$ for the Newtonian fluid.
(b) With the assumption of steady-state axial flow of an incompressible fluid in a circular pipe. Devise the model to capture the velocity distribution, and average velocity at outlet and list the assumptions clearly
13. (a) Take a copper wire which carrying a current of 5 A , voltage 240 V as the heat source and devise the model to estimate the temperature distribution and perform heat transfer analysis and identify the thickness of plastic lagging required to have minimum temperature over the surface. Assume the missing parameters and list them clearly.
(b) Assume a solid wall diffusing through flowing fluid in the circular pipe and devise the model to estimate the mass fraction distribution by considering the no chemical reaction that occurs on the solid surface and diffuses back to the bulk fluid, and list the assumptions clearly
14. (a) Devise a general model equation to solve for mass transport in a binary system, where a chemical reaction conducted on mole basis?

## (OR)

## (OR)

LEVE
(7)

3
(14) 1
(b) Contrast the development of Euler equation and Stoke equation, starting from
(14) 4

3
Equation of motion and Comment on general boundary conditions used for
fluid - solid interfaces
15. (a) Exemplify the time smoothed form of velocity by following Reynolds
definition and explain how Navier Stokes equation has closure problem.
(OR)
(b) Compare and Contrast the different analogies used in solving the fluid
pressure drop calculation and film coefficient calculation for hot fluid flowing in cold pipe.

## PART- C (1 x $10=10$ Marks

(Q.No. 16 is compulsory)
16. Construct the rate of change of temperature of the water referred in the below picture as measured by Mr. Euler and Mr. Lagrange and list the assumptions used.


Marks CO $\begin{gathered}\text { RBT } \\ \text { LEVEL }\end{gathered}$
(10) $1 \quad 5$

