	Q. Cour	: 97	2246						
	Reg. No.							PART- B	(5 x 14
	B.E / B.TECH. DEGREE EXAMINATION, MAY 2023			11. (a)	(i) (Compute the	thermal	conductivit	ies of N
	Seventh Semester		atmospheric pressure from the following						
	CH18701 – TRANSPORT PHENOMENA		[Gas µ	u x 10 ⁷ (g	/cm.s)	C _p (cal/		
(Regulation 2018) TIME: 3 HOUDS MAY MARKS: 100						NO 1	929	,	7.15
		100			CH_4 1	116	···· CIL 20	8.55	
C	J Impart knowledge on the fundamental connections between the conservation laws in her momentum in terms of vector and tensor fluxes		(11)	Compute the	e diffusiv the foll	owing the	″ in no data an		
CO 2 Apply the shell balance approach to derive differential mass and heat balance equations for laminar						values.	, the ton	lowing the v	Jata all
	flow system.			[Temperatur	e Ex	perimental,	μ(c	
C	3 Develop the ability to model and analyze fluid flow, heat and mass transfer processes.				(K)	DA	AA, (cm/s)		
C) 4 Augment the capability to design and to solve open ended transport problems					275.7	1.5	52 x 10 ⁻⁵	1.68
C	J 5 Apply different analogies to study the similarities in different transport phenomena.					289.6	1.0	58 x 10 ⁻⁵	1.56
	PART- A (10 x 2 = 20 Marks)				l	304.2	2.,	07 X 10	(OR
1.	(Answer all Questions) State the limitations of analysis in transport phenomena.	rbt level 2	(b) Compare and contrast the molecular and momentum transport; And verify that moment has the same dimensions as force per unit area						
2.	Relate the phenomenological laws involved in transport phenomena in a single definition.	1	2	12. (a)	Devise a meaningful sketch showing the flow which explains the components of τ and ρvv f				
3.	Write the boundary conditions involved in 2D Couette flow.	2	2						
4.	Calculate the hydraulic diameter for an annulus space created by coaxial cylinders where	2	3						
	inner cylinder is 50mm diameter and outer cylinder is 85mm diameter.			(D)	a circ	ular pipe. D	evise the	e model to	capture
5.	Sketch the temperature profile of a copper wire which is a electrical heat source.	3	2		averag	ge velocity a	t outlet a	and list the a	ssumpti
6.	Mention the significance of dimensionless number characterize the free and forced	3	2						
	convection	-		13. (a)	Take	a copper wir	e which o	carrying a cu	arrent of
7	Convert in all possible ways the pressure gradient term in Navier stokes equation into	4	2		perfor	m heat trans	sfer anal	vsis and ide	entify th
7.	dimensionless form	7	2		requir	red to have m	ninimum	temperature	over th
0		4	•		param	neters and lis	t them c	learly.	
8.	Prove the continuity equation takes the form $V.V = 0$	4	2			1. 1	11 1:00	• .1 1	(OR
9.	Justify on why we have to use averaging technique in order to model turbulent fluid flow.	5	2	(b)	Assume a solid wall diffusing through flow				flowing
10.	Relate the importance of dimensionless number in defining the acceptance of analogous nature of transport process.	3	no chemical reaction that occurs on the solid s bulk fluid, and list the assumptions clearly.						

14. (a) Devise a general model equation to solve for system, where a chemical reaction conducted (OR)

PART- B (5 x 14 = 70 Marks)

				Marks	CO	RBT LEVEL
onductiv	ities	s of NO and CH4	(7)	1	3	
om the f	follo	owing data for the	se conditions,			
n.s)	Cp	(cal/g.mole K)				
	7.1	15				
	8.55					
y of Hg	²⁰³	in normal liquid	Hg using Erying	(7)	1	3
ving the	da	ta and compare v	with experimental			
rimental,		μ (cp)	$V (cm^{3}/g)$			
(cm/s)		1.60	0.070(
$x 10^{-5}$		1.68	0.0736			
x 10 ⁻⁵		1.56	0.0737			
x 10 ⁻⁵		1.27	0.0748			
1	1	(OR)	1		4	2
molect	ilar	and convective	mechanisms for	(14)	I	3
orce per	t me	t area	area per unit time			
orce per	um	it alca.				
showin	o tł	ne flow nattern i	n arbitrary shape	(14)	2	3
ts of τ	and	ovy for the Newto	nian fluid.	(14)	2	5
		(OR)				
y-state a	axia	l flow of an incon	npressible fluid in	(14)	2	3
nodel to	ca	pture the velocity	distribution, and	()		-
l list the	assi	umptions clearly.				
		1				
rying a	curr	ent of 5 A, voltage	e 240V as the heat	(14)	3	4
l to esti	imat	the temperature	e distribution and			
is and ic	lent	ify the thickness	of plastic lagging			
nperatu	re o	ver the surface. As	ssume the missing			
rly.						
		(OR)				
g throug	gh fl	owing fluid in the	circular pipe and	(14)	3	4
he mass	frac	ction distribution	by considering the			
urs on th	he so	olid surface and d	iffuses back to the			
ptions c	lear	ıy.				
tion to a	مايد	for mass transmo	rt in a hinary	(14)	4	2
uon to s	undu	icted on mole basi	is?	(14)	4	3
	maa		10:			

Q. Code: 972246

RBT

LEVEL

5

CO

- (b) Contrast the development of Euler equation and Stoke equation, starting from (14) 4 3 Equation of motion and Comment on general boundary conditions used for fluid – solid interfaces
- 15. (a) Exemplify the time smoothed form of velocity by following Reynolds (14) 5 4 definition and explain how Navier Stokes equation has closure problem.

(OR)

Compare and Contrast the different analogies used in solving the fluid (14) 5 **(b)** 4 pressure drop calculation and film coefficient calculation for hot fluid flowing in cold pipe.

PART- C (1 x 10 = 10 Marks) (Q.No.16 is compulsory)

16.