Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023
 Third Semester
 CS18201 - DIGITAL PRINCIPLES AND SYSTEM DESIGN
 (Computer Science and Engineering)

(Regulation 2018/2018A)

TIME: 3 HOURS

COURSE OUTCOMES	statement	$\stackrel{\text { RBT }}{\text { LeVEL }}$
CO 1	Students will be able to learn the different types of number systems and simplification of Boolean functions.	2
CO 2	Students will be able to understand various logic gates and their usage.	3
CO3	Students will be able to study, analyse and design various combinational circuits and its implementation using VHDL.	4
CO 4	Students will be able to study, analyse and design various synchronous and asynchronous sequential circuits and its implementation using VHDL.	4
CO 5	Students will be able to understand the different type of memory and their structures.	4

PART- A ($10 \times 2=20$ Marks)
(Answer all Questions)

1. Convert $(1,3215)$ to binary.
2. List the characteristics of grey code.
3. Draw the circuit of half subtractor.
4. Define De- multiplexing.
5. Draw the characteristic ' table of SR Latch.
6. Compare Sequential and combinational circuit.
7. What is the use of primitive flow table.
8. What is a Cycle?
9. List the different types of ROM.
10. List the operations performed in a memory.

PART- B ($5 \times 14=70$ Marks $)$
11. (a) Construct the given using only NOR gates

$$
\mathrm{F}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d},)=\operatorname{Pi}(1,3,4,5,7,9,11,13,14)
$$

(b) Simplify using K Map method $F(A, B, C, D, E)=(0,2,5,7,9,11,15,17,18,20,24,25,30,31)+$, $d(1,4,10,13,14,21,25)$
(14) 14
12. (a) Design a BCD to Excess 3 code convertor.
(14) 23
(OR)
(b) Design a multiplexer circuit for the boolean function
(14) 23

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=(1,3,4,5,7,8,, 11,14,15)
$$

13. (a) Explain in detail about the various types of shift register.
(14) 3
(OR)
(b) With a neat diagram explain the working of a 4 bit ring counter.
14. (a) Discuss in detail about the various hazards that exists in a digital system.
(14) 43 (OR)
(b) Design a gated latch circuit with two inputs G (gate) and D (data), and one
(14) 3
(b) Design a ged Q Biary int and one output Q. Binary information present at the D input is transferred to the Q output when $\mathrm{G}=1$. The Q output will follow the D input as long as $\mathrm{G}=1$.
When G goes to 0 ,the information that was present at the D input at the time the transition occurred is retained at the Q output.
15. (a) Discuss in detail about the various error detection and correcting codes.
(14) 5
(OR)
(b) Implement the following Boolean functions using PLA:
(14) 5 $F 1(A, B, C)=(01,2,4)$

PART- C ($1 \times 10=10$ Marks)

(Q.No. 16 is compulsory)
16. Design and implement a 3-bit synchronous counter.

