Reg. No.							

B.E. / **B.TECH. DEGREE EXAMINATIONS, MAY 2023**

Third Semester

CS18201 – DIGITAL PRINCIPLES AND SYSTEM DESIGN

(Computer Science and Engineering)

(Regulation 2018/2018A)

TIME: 3 HOURS			MAX. MARKS: 100					
			ns and simplification		RBT LEVEL 2			
CO 2	of Boolean functions. Students will be able to understand various logic gates and their usage.			3				
CO 3			ıd its					
CO 4 Students will be able to study, analyse and design v		Students will be able to study, analyse and design various synchronasynchronous sequential circuits and its implementation using VHDL.	nous	and	4			
CO 5	CO 5 Students will be able to understand the different type of memory and their structure		ctures	3.	4			
PART- A (10 x 2 = 20 Marks) (Answer all Questions)								
				CO	RBT LEVEL			
1.					2			
2.					2			
3.	3. Draw the circuit of half subtractor.				2			
4.	4. Define De- multiplexing.				2			
5.	5. Draw the characteristic ' table of SR Latch.				2			
6.	6. Compare Sequential and combinational circuit.				3			
7.	7. What is the use of primitive flow table.				2			
8.	8. What is a Cycle?				2			
9.	2. List the different types of ROM. 5				2			
10.	List t	he operations performed in a memory.		5	2			
PART- B (5 x $14 = 70 \text{ Marks}$)								
		Mai	rks (CO	RBT LEVEL			
11. (a) Co	onstruct the given using only NOR gates (14	4)	1	4			
	F((a,b,c,d,) = Pi(1,3,4,5,7,9,11,13,14)						

		Q. Code:478450			
(b)	Simplify using K Map method	(14)	1	4	
	F(A,B,C,D,E) = (0,2,5,7,9,11,15,17,18,20,24,25,30,31,) +				
	d(1,4,10,13,14,,21,25)				
12. (a)	Design a BCD to Excess3 code convertor.	(14)	2	3	
	(OR)				
(b)	Design a multiplexer circuit for the boolean function	(14)	2	3	
	F(A,B,C,D) = (1,3,4,5,7,8,11,14,15)				
13. (a)	Explain in detail about the various types of shift register.	(14)	3	4	
()	(OR)	()			
(b)	With a neat diagram explain the working of a 4 bit ring counter.	(14)	3	4	
(~)		(-1)		-	
14. (a)	Discuss in detail about the various hazards that exists in a digital system.	(14)	4	3	
	(OR)				
(b)	Design a gated latch circuit with two inputs G (gate) and D (data), and one	0	4	3	
	output Q. Binary information present at the D input is transferred to the Q				
	output when G=1.The Q output will follow the D input as long as G=1.				
	When G goes to 0,the information that was present at the D input at the				
	time the transition occurred is retained at the Q output.				
15. (a)	Discuss in detail about the various error detection and correcting codes.	(14)	5	3	
13. (a)		(14)	3	3	
	(OR)				
(b)	Implement the following Boolean functions using PLA:	(14)	5	3	
	F1(A,B,C) = (01,2,4)				
	<u>PART- C (1 x 10 = 10 Marks)</u>				
	(Q.No.16 is compulsory)	Marks	co	RBT	
		1.141 N3	20	LEVEL	
16.	Design and implement a 3-bit synchronous counter.	(10)	2	5	
