Q. Code: 677809

Reg. No.							

B.E. / B.TECH. DEGREE EXAMINATION, MAY 2023

Fourth Semester

CS18401 – COMPUTER ARCHITECTURE

(Computer Science and Engineering)

(Regulation2018 / 2018A)

TIME: 3 HOURS MA			AX. MA	X. MARKS: 100			
	COURSE STATEMENT				RBT		
OUTCOMES CO 1 Understand Bus structure and Instruction		Understand Bus structure and Instruction set			LEVEL 2		
CO	CO 2 Design Arithmetic and Logic unit.				3		
	CO 3 Design of Control units.				3		
	CO 4 Understand Parallel processing				2		
CO 5 Evaluate performance of Memory.				5			
		PART- A $(10 \times 2 = 20 \text{Marks})$					
		(Answer all Questions)					
				CO	RBT LEVEL		
1. What are the components of computer system?				1	1		
2. Write the basic performance equation.				1	1		
3. What is overflow in floating point arithmetic?				2	1		
4. Perform the addition of following numbers 1101,1001				2	2		
5. Define hazard. Give an example for control hazard.				3	2		
6. Brief about branch prediction buffer.				3	2		
7. Describe the main idea of Parallel processing architectures.				4	2		
8. Define multicore microprocessor.				4	1		
9. Define hit rate and miss rate.			5	1			
10.	Diffe	erentiate paging and segmentation.		5	2		
PART- B (5x 14=70Marks)							
			Marks	СО	RBT LEVEL		
11. (a) Give appropriate examples to explain the various addressing modes and		(14)	1	3			
describe the application of each.							
		(OR)					
	(b) l	Discuss the various instructions formats and illustrate with an example.	(14)	1	3		

Q. Code: 677809

12. (a)	Multiply unsigned numbers 13 as Multiplicand and 11 as multiplier using	(14)	2	4
	booths algorithm to find the product.			
	(OR)			
(b)	Divide (12 $_{10}$ / 3 $_{10}$) using restoring division methods with necessary	(14)	2	4
	flowchart and steps. Find the quotient and remainder.			
13. (a)	Explain in detail about types of pipeline hazards and how the performance	(14)	3	3
	degradation can be resolved in data hazards with an example?			
	(OR)			
(b)	With an example, explain the impact of pipelining on instruction set design.	(14)	3	3
14. (a)	Compare and contrast Fine grained, Coarse grained multithreading and	(14)	4	4
	Simultaneous Multithreading.			
	(OR)			
(b)	Identify the Flynn classification and give an example for each class in	(14)	4	4
	Flynn's classification.			
15. (a)	Explain in detail about interrupts and What the CPU does with interruptions.	(14)	5	4
	Discuss thoroughly with a clean diagram.			
	(OR)			
(b)	Direct Memory Access can improve I/O speed? Justify with necessary	(14)	5	4
	explanation and block diagram.			
	<u>PART- C (1x 10=10Marks)</u>			
	(Q.No.16 is compulsory)			
		Marks	CO	RBT LEVEL
16.	Our favorite program runs in 10 seconds on computer A, which has a 2.2 GHz	(10)	1	5
	Clock. We are trying to help a computer designer build a computer, B, which			
	will run this program in 8 seconds. The designer has determined that a			
	substantial increase in the clock rate is possible, but this increase will affect			
	the rest of the CPU design, causing computer B to require 1.5 times as many			
	clock cycles as Computer A for this program. What clock rate should we tell			
	the designer to target?			