

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	The students will be able to analyze the running time of algorithms using asymptotic Analysis.	2
CO 2	The student will be able to describe the divide-and-conquer techniques and analyze the running time of algorithms synthesizing those paradigms.	2
CO 3	The students will be able to describe the dynamic programming and greedy paradigms and analyze the running time of the algorithm using those techniques.	3
CO 4	The students will be able to employ linear programming and computational geometry methods to solve engineering problems.	4
CO 5	The student will be able to describe the non-deterministic polynomial algorithms.	5

PART- A (10 x 2 = 20 Marks)

Answer al	l Questions)
-----------	--------------

		CO	RBT LEVEL
1.	Explain the role of algorithms in computing with example.	1	3
2.	Identify the parameters to measure the efficiency of an algorithm.	1	3
3.	State the difference between divide-and-conquer and dynamic programming strategies.	2	2
4.	State the regularity condition used in Master's theorem.	2	2
5.	How many numbers of binary search trees can be formed using 'n' keys?	3	2
6.	State the limitation of using Floyd-Warshall Algorithm for finding all pairs shortest path	3	2
	in a graph.		
7.	State the rules for converting linear programs into standard form.	4	2
8.	How cross products are used for determining whether two lines segments intersect?	4	2
9.	Examine the polynomial time reducibility and infer its significance in NP-completeness.	5	4
10.	Differentiate feasible solution and optimal solution with suitable example.	5	3

PART- B (5 x 14 = 70 Marks)

		Marks	CO	RBT
				LEVEL
11. (a)	Illustrate the Asymptotic Notations and its purpose in Algorithm analysis	(14)	1	2
	with suitable diagrams and examples.			

(**OR**)

- Analyze Insertion sort with the proper a **(b)** 56,71,88,15,23,45,12,33,44 using insertion so
- Given a one-dimensional array that may con-12. (a) integer, find the sum of contiguous sub-arr largest sum using maximum-sub-array-sum al 3, -5, 1, -2, -1, 11, -15, 6}. Find the maximu complexity of the algorithm.

(OR

- Write an algorithm to find the closest pair of p **(b)** and explain it with an example. Derive the we complexity.
- Explain the algorithm to find the longest con 13. (a) sequences. Consider the strings $Y = \{B, D, C, A, B, A\}$. Calculate the length subsequence. Find the longest common subs dynamic programming strategy.

(OF

Explain how greedy approach is used in Dijks **(b)** single-source shortest paths for the given graph.

Solve the problem using simplex method in lin 14. (a) Maximize $2x_1 - 3x_2 + 3x_3$ Subject to $X_1 + X_2 - X_3 \le 7$ $-X_1-X_2+X_3 \le -7$ $X_1 - 2X_2 + 2X_3 \le 4$ $X_1, X_2, X_3 \ge 0$

(**OR**)

Examine Graham's scan and Jarvi's march alg **(b)** convex hull.

	Q. Cod	le:182	2388
algorithm. Sort the elements ort. Derive its Complexity.	(14)	1	2
tain both positive and negative ray of numbers which has the algorithm. Given the arrays: {- num sub-array sum. Derive the	(14)	2	3
R) points using divide and conquer orst case and average case time	(14)	2	3
$ \begin{array}{ll} \mbox{subsequence for any 2} \\ X = \{A,B,C,B,D,A,B\} & \mbox{and} \\ \mbox{of the longest common} \\ \mbox{sequence for the above using} \end{array} $	(14)	3	3
R) stra's algorithm for finding the	(14)	3	3

10.0.11	nno ano main a nnohlam	(14)	1	2
near	programming proplem.	(14)	4	
	F 88 F	()	-	-

	gorithms for the	construction of	(14)	4	3
--	------------------	-----------------	------	---	---

			Q. Code:182388			
15. (a)	(i)	Prove that Circuit satisfiability problem is NP-complete.	(7)	5	4	
	(ii)	Prove that Formula satisfiability problem is NP-complete.	(7)	5	4	
		(OR)				
(b)	(i)	Explain Clique Problem. Prove that Clique problem is NP-complete.	(7)	5	4	
	(ii)	Explain Vertex cover problem. Prove that Vertex problem is NP-complete.	(7)	5	4	

<u>PART- C (1 x 10 = 10 Marks)</u>

	(Q.N	lo.16	is	compu	lsory)
--	------	-------	----	-------	--------

Marks CO RBT LEVEL

5

16. Explain optimal binary search tree algorithm in detail. Derive its time (10) 3 complexity. Given the values of pi's and qi's in Table1, construct the optimal binary search tree using the above keys whose expected search cost is minimum.

i	0	1	2	3	4	5
Pi		0.15	0.10	0.05	0.10	0.20
qi	0.05	0.10	0.05	0.05	0.05	0.10

Q. Code:182388