Reg. No.

\square

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023

Fifth Semester

CS18503 -THEORY OF COMPUTATION

(Computer Science and Engineering) (Regulation 2018/2018A)

TIME: 3 HOURS

COURSE

statement

MAX. MARKS: 100

CO 1 The student will be able to design and build Finite Automata.
CO 2 The student will be able to skillfully demonstrate and solve problems on regular $\mathbf{3}$ expressions and regular languages.
CO 3 The student can formulate and design Pushdown Automata for the given context free 3 languages and context free grammars.
CO 4 The student can design and construct the Turing machine for pattern matching and 4 computation of basic integer functions.
CO 5 The students will be able to infer the limitations of computers, interpret the answer to 5 what kind of problems can be computed and what cannot be computed by a computer.

PART- A ($10 \times 2=20$ Marks)
 (Answer all Questions)

1. Explain Formal Notation of ε-NFA.
. Differentiate between proof by contradiction and proof by contrapositive.
Explain the Regular Expression and its applications.
2. Construct a Regular Expression for set of strings ending with $01 . \quad 2 \begin{aligned} & \mathbf{2}\end{aligned}$
3. Construct the CFG for the language $L=\left\{a^{n} b^{2 n}\right\}$ where $n \geq 1$.
4. Explain the components of Push Down automata. $\quad 3 \quad 2$
5. Choose the methods to Simplify the Context Free Grammar. 4
6. Illustrate the term Non-Deterministic Turing Machine with example. 4
7. Explain the formal parameters of Linden Mayer system. $\quad \mathbf{5} \quad \mathbf{2}$
8. When a recursive enumerable language is said to be recursive?
(ii) Construct the DFA from the given NFA.

\longrightarrow| States | 0 | 1 | |
| :--- | :--- | :--- | :---: |
| q_{0} | $\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$ | $\left\{\mathrm{q}_{0}\right\}$ | |
| q_{1} | \varnothing | $\left\{\mathrm{q}_{2}\right\}$ | |
| ${ }^{*} \mathrm{q}_{2}$ | \varnothing | \varnothing | |
| $(\mathbf{O R})$ | | | |

(i) Prove that a language L is accepted by some ε-NFA if and only if L is accepted by some DFA.
(ii) Construct the DFA equivalent to the NFA.

\longrightarrow| States | 0 | 1 |
| :--- | :---: | :---: |
| p | $\{\mathrm{p}, \mathrm{q}\}$ | $\{\mathrm{p}\}$ |
| q | $\{\mathrm{r}\}$ | $\{\mathrm{r}\}$ |
| r | $\{\mathrm{s}\}$ | \emptyset |
| $* \mathrm{~s}$ | $\{\mathrm{~s}\}$ | $\{\mathrm{s}]$ |

12. (a) (i) Construct a ε-NFA for the following Regular Expression $\mathrm{R}=(0+1)^{*} 00(0+1)^{*}$
(ii) Construct the Regular Expression from the given DFA.

(OR)
(b) (i) Construct a ε-NFA for the following Regular Expression
(6) 2 $\mathrm{R}=(0+1)^{\text { }}(00+11)(0+1)^{*}$
(ii) Construct the regular expression from the given DFA using State Elimination method.

PART- B (5 x $14=70$ Marks)
11. (a) (i) Prove that a language L is accepted by some DFA if and only if L is (7) 1 accepted by some NFA.

δ	0	1
$\longrightarrow{ }^{*} \mathrm{p}$	s	p
q	p	s
r	r	q
s	q	r

(i) Consider the CFG with Productions $\mathrm{S}->\mathrm{aB}|\mathrm{bA}, \mathrm{A}->\mathrm{a}| \mathrm{aS} \mid \mathrm{bAA}$,
(10) 3
$\mathrm{B}->\mathrm{bS}|\mathrm{aBB}| \mathrm{b}$. Generate the string aaabbabbba. Compute the following
a) Left Most Derivation.
b) Right Most Derivation
c) Parse Tree
d) Check whether the given grammar is ambiguous or not.
(ii) Explain the applications of Context Free Grammar.
(4) 3
(OR)
(b) (i) State Pumping Lemma for Context Free Languages. Justify the need for pumping lemma for Context Free Languages.
(ii) Determine a PDA for the language containing strings with equal
(10) 3
number of a's and b's.
14. (a) Convert the given $C F G G=\{S, A, B\},\{0,1\}, P, S)$ into $C N F$ where P is given by
$\mathrm{S} \rightarrow 0 \mathrm{~B}|1 \mathrm{~A}, \mathrm{~A} \rightarrow 0| 0 \mathrm{~S}|1 \mathrm{AA}, \mathrm{B} \rightarrow 1| 1 \mathrm{~S} \mid 0 \mathrm{BB}$.
(b) Construct the Turing Machine for the language $L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$
(14) 43
15. (a) Construct the $\mathrm{TM} \mathrm{M}=(\{\mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3\},\{0,1\},\{0,1, \mathrm{~B}\}, \delta, \mathrm{q} 1, \mathrm{~B},\{\mathrm{q} 3\})$ where δ is given by

q_{i}	$\delta\left(\mathrm{q}_{\mathrm{i}}, 0\right)$	$\delta\left(\mathrm{q}_{\mathrm{i}}, 1\right)$	$\delta\left(\mathrm{q}_{\mathrm{i}}, \mathrm{B}\right)$
q_{1}	$\left(\mathrm{q}_{2}, 1, \mathrm{R}\right)$	$\left(\mathrm{q}_{2}, 0, \mathrm{~L}\right)$	$\left(\mathrm{q}_{2}, 1, \mathrm{~L}\right)$
q_{2}	$\left(\mathrm{q}_{3}, 0, \mathrm{~L}\right)$	$\left(\mathrm{q}_{1}, 0, \mathrm{R}\right)$	$\left(\mathrm{q}_{2}, 0, \mathrm{R}\right)$
q_{3}	$--------------------\quad$		

And input string $w=01$ to an instance of MPCP.

(OR)

(b) Explain P and NP problems with necessary examples.
(14) 5

4

PART- C ($\mathbf{1 \times 1 0 = 1 0 ~ M a r k s) ~}$

(Q.No. 16 is compulsory)

Marks	CO	RBT
		LEVEL
(10)	3	5

16. Construct the following Grammar to Greibach Normal Form (GNF). (10) $\mathbf{3} \quad \mathbf{5}$

S->AA|0
A->SS|1

