Reg. No.

B. E / B. TECH.DEGREE EXAMINATIONS, MAY 2023
 Third Semester
 CS18603 - CRYPTOGRAPHY AND NETWORK SECURITY
 (Computer Science and Engineering)

(Regulation2018)
TIME: 3 HOURS

COURSE OUTCOMES	STATEMENT	RBT COVEL
CO 1	Understand OSI security architecture, Classical Encryption techniques and acquire	$\mathbf{2}$
	fundamental knowledge on the concepts of finite fields and number theory	
CO 2	Understand various Private and Public Key cryptographic algorithms.	$\mathbf{3}$
CO 3	To learn about hash functions and digital signature algorithms.	$\mathbf{3}$
CO 4	Understand about Authentication Applications and System Security.	$\mathbf{4}$
CO 5	Acquire knowledge in various network security models.	$\mathbf{3}$

PART- A (10x2=20Marks)
(Answer all Questions)

1. State alternative form of Fermat"s theorem with example. $\mathbf{1} \quad \mathbf{2}$
2. Find the GCD of $(2740,1760)$ using Euclid"s Algorithm. $1 \quad 4$
3. Illustrate about avalanche effect. $\mathbf{2} \quad \mathbf{3}$
4. Write down the purposes of the S-box in DES. 2
5. List the types of functions that may be used to produce an authenticator. $\mathbf{3} \quad \mathbf{2}$
6. Compare MAC, hash practices and Digital Signature. 3
7. Give the typical phases of operation of a virus or worm? $\mathbf{4} \mathbf{2}$
8. Show how entities constitute a full service in Kerberos environment? 4
9. List the limitations of SMTP. 5
10. Differentiate transport and tunnel mode in IPsec.

54

PART- B (5x 14=70Marks)
11. (a) State Chinese Remainder Theorem and find X for the given set of (14) 14 congruent equations using CRT.
(OR)
(b) Solve using Playfair cipher method. Encrypt the word "Semester Result" with the keyword "Examination". Discuss the rules to be followed.
12. (a) With neat diagram illustrate cipher block modes of operation.
(OR)
(b) Illustrate detail about AES with neat diagram.
13. (a) Explain the steps involved in SHA algorithm for encrypting a message with maximum length of less than 2128 bits and produces as output a 512-bit message digest, with neat diagram.
(OR)
(b) Explain digital signature standard with necessary diagrams in detail.
14. (a) Suggest and explain about an authentication scheme for mutual authentication between the user and the server which relies on symmetric encryption.
(OR)
(b) Examine how firewalls help in establishing a security framework for an organization.
15. (a) Analyse the methodologies involved in computing the keys in SSL/TLS protocol.
(OR)
(b) Using the PGP cryptographic functions, analyse the security features offered for emails in detail.

PART- C (1x 10=10Marks)
(Q.No. 16 is compulsory)
16. Alice and Bob use the Diffie - Hellman key exchange technique with a common prime number 11 and a primitive root of 2. If Alice and Bob choose distinct secret integers as 9 and 3, respectively, then compute the shared secret key and assess the same.
$14 \quad 1 \quad 4$ 1423

1432

1432

1432
$14 \quad 4 \quad 4$
$14 \quad 4 \quad 4$

1454

1454

Marks	CO	RBT LEVEL
$\mathbf{1 0}$	$\mathbf{2}$	$\mathbf{5}$

