Q. Code: 966368

Reg. No.

B. E / B. TECH.DEGREE EXAMINATIONS, MAY 2023

Third Semester

CS18603 – CRYPTOGRAPHY AND NETWORK SECURITY

(Computer Science and Engineering)

(Regulation2018)

TIME: 3 HOURS

MAX. MARKS: 100

Marks CO

RBT

COURSE OUTCOMES	STATEMENT				
CO 1	Understand OSI security architecture, Classical Encryption techniques and acquire				
	fundamental knowledge on the concepts of finite fields and number theory				
CO 2	Understand various Private and Public Key cryptographic algorithms.	3			
CO 3	To learn about hash functions and digital signature algorithms.	3			
CO 4	Understand about Authentication Applications and System Security.	4			
CO 5	Acquire knowledge in various network security models.	3			

PART- A (10x2=20Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	State alternative form of Fermat's theorem with example.	1	2
2.	Find the GCD of (2740, 1760) using Euclid"s Algorithm.	1	4
3.	Illustrate about avalanche effect.	2	3
4.	Write down the purposes of the S-box in DES.	2	3
5.	List the types of functions that may be used to produce an authenticator.	3	2
6.	Compare MAC, hash practices and Digital Signature.	3	4
7.	Give the typical phases of operation of a virus or worm?	4	2
8.	Show how entities constitute a full service in Kerberos environment?	4	3
9.	List the limitations of SMTP.	5	2
10.	Differentiate transport and tunnel mode in IPsec.	5	4

PART- B (5x 14=70Marks)

															LEVEL
11. (a)	State	Chinese	Remainder	Theorem	and	find	Х	for	the	given	set	of	(14)	1	4
	congruent equations using CRT.														

X=1 (mod 5)	
X=2 (mod 7)	
X=3 (mod 9)	
X=4 (mod 11)	

	0	D)
- (()	К١
۰.	\mathbf{v}	1.)

(b)	Solve using Playfair cipher method. Encrypt the word "Semester Result" with the keyword "Examination". Discuss the rules to be followed.	14	1	4
12. (a)	With neat diagram illustrate cipher block modes of operation.	14	2	3
	(OR)			
(b)	Illustrate detail about AES with neat diagram.	14	2	3
13. (a)	Explain the steps involved in SHA algorithm for encrypting a message with maximum length of less than 2128 bits and produces as output a 512-bit message digest, with neat diagram.	14	3	2
	(OR)			
(b)	Explain digital signature standard with necessary diagrams in detail.	14	3	2
14. (a)	Suggest and explain about an authentication scheme for mutual authentication between the user and the server which relies on symmetric encryption.	14	4	4
	(\mathbf{OR})			
(b)	Examine how firewalls help in establishing a security framework for an organization.	14	4	4
15. (a)	Analyse the methodologies involved in computing the keys in SSL/TLS protocol.	14	5	4
	(OR)			
(b)	Using the PGP cryptographic functions, analyse the security features offered for emails in detail.	14	5	4
	PART- C (1x 10=10Marks)			
	(Q.No.16 is compulsory)			
		Marks	CO	RBT
16.	Alice and Bob use the Diffie – Hellman key exchange technique with a common prime number 11 and a primitive root of 2. If Alice and Bob choose distinct secret integers as 9 and 3, respectively, then compute the shared secret key and assess the same.	10	2	LEVEL 5
