Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023
 Fifth Semester

 EC16501 - DIGITAL COMMUNICATION

 EC16501 - DIGITAL COMMUNICATION}
(Electronics and Communication Engineering)
(Regulation 2016)
TIME: 3 HOURS
MAX. MARKS: 100
PART- A ($10 \times 2=20$ Marks)
(Answer all Questions)

1. Define Entropy.
2. Mention one advantage and one disadvantage of digital communication system.
3. A television signal has a bandwidth of 4.5 MHz . What is the sampling rate if the signal is to be sampled at a rate 30% above Nyquist Rate?
4. List the various temporal waveform coding techniques.
5. Draw the Bipolar NRZ line coding format for the following data sequence 0001010111 .
6. What is correlative coding?
7. Define ASK and FSK.
8. Compare coherent and noncoherent detection.
9. What is Hamming distance?
10. What is the code rate in $a(n, k, K)$ convolutional encoder.

$$
\text { PART- B (5 x } 16 \text { = } 80 \text { Marks) }
$$

Marks
11. (a) The probability distribution of a discrete memoryless source is given below. Determine Huffman codes for the source symbols and compute the coding efficiency.

S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$
0.3	0.25	0.15	0.12	0.10	0.08

(OR)

(b) Compute the mutual information for the given discrete memoryless channel. The probability of the source symbols $\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}$ are $0.3,0.4$ and 0.3 respectively.

12. (a) Explain low pass sampling and reconstruction of the signal from its samples in detail with mathematical relations.
(OR)
(b) Explain the principle and working of Delta Modulation system. How is it different from Differential PCM?
13. (a) Derive the power spectral density of NRZ Unipolar format and NRZ Polar format and analyze the same.

(OR)

(b) Explain in detail about Duo-binary encoding and obtain the frequency response and impulse response.
14. (a) Explain the concept of coherent BPSK with transmitter and receiver block diagrams and obtain the expression for Bit Error Rate.

(OR)

(b) Explain the principles of QAM and M-ary modulation techniques with relevant signal expressions and signal space diagrams.
15. (a) For a $(7,4)$ cyclic block code with generator polynomial $g(D)=1+D+D^{3}$, draw and explain the operation of the encoder and decoder. Also obtain the code words for all the messages and tabulate them.

(OR)

(b) For a $(6,3)$ systematic linear block code, the code word comprises of [I1, I2, I3 , P1, P2 , P3] where the three parity check bits P1, P2 and P3 are formed from the information bits I1, I2, I3 as follows :
$\mathrm{P} 1=\mathrm{I} 1 \oplus \mathrm{I} 2 ; \mathrm{P} 2=\mathrm{I} 1 \oplus \mathrm{I} 3 ; \mathrm{P} 3=\mathrm{I} 2 \oplus \mathrm{I} 3$
Find (i) The parity check matrix; (ii) The generator matrix; (iii) All possible code words; (iv) Minimum weight; (v) Minimum distance and (vi) the error detecting and correcting capability of the code; (vii) if the received sequence is 111001 , calculate the syndrome and decode the received sequence.

