Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023
 Sixth Semester
 EC18014 - INFORMATION THEORY
 (Regulation 2018)

TIME: 3 HOURS
COURSE outcomes
CO 1 To understand the principles of Information theory
CO 2 To study the different data compression techniques
CO 3 To learn the channel classification and capacity.
CO 4 To gain knowledge on differential entropy and Gaussian channel capacity.
CO 5 To understand the characterization of Rate Distortion and Gaussian channel
PART- A ($10 \times 2=20$ Marks)
(Answer all Questions)

12. (a) A discrete memoryless source has an alphabet of seven symbols with probabilities of occurrence as shown below:

Symbol	S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$
Probability	0.25	0.25	0.125	0.125	0.125	0.0625	0.0625

Obtain the Shannon -Fano code and the Huffman code for this source and compare efficiency of the two coding schemes.
(OR)
(b) (i) State and establish Kraft's inequality.
(ii) The code words chosen for a set of symbols $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ are $1,01,001,000$ respectively. Draw the binary tree representation of the code words and check whether it is prefix free or not.
13. (a) Discuss binary symmetric and binary erasure channel. Draw the channel diagrams and derive the expressions for their channel capacities.
(b) (i) Given a binary symmetric channel with $\mathrm{P}(\mathrm{Y} / \mathrm{X})=\left[\begin{array}{ll}3 / 4 & 1 / 4 \\ 1 / 4 & 3 / 4\end{array}\right]$ and $\mathrm{P}\left(\mathrm{X}_{1}\right)=2 / 3, \mathrm{P}\left(\mathrm{X}_{2}\right)=1 / 3$. Calculate the mutual information and channel capacity.
(ii) Discuss the generation and properties of Hamming codes.
14. (a) (i) Derive the capacity of a bandlimited Gaussian channel with noise spectral density $\frac{N_{0}}{2}$ watts/ Hz and power P watts.

(OR)

(b) (i) Consider a voice graded telephone channel with bandwidth of 3.4 KHz , and output signal power to noise power ratio of 20 dB . The input to the channel has 128 symbols assumed to occur with equal probability and successive transmissions are statistically independent. Calculate the channel capacity and maximum symbol rate for which error free transmission over channel is possible.
(ii) Write the properties of differential entropy.
15. (a) (i) How to measure distortion? Explain with two examples.
(ii) Explain the calculation of Rate distortion function for binary source.
(OR)
(b) Explain the calculation of channel capacity and rate distortion function.

PART- C ($1 \times 10=10$ Marks)
(Q.No. 16 is compulsory)
16. Explain the noiseless binary channel with a diagram and transition matrix and find the capacity.

