

B.E / B.TECH. DEGREE EXAMINATION, MAY 2023

Sixth Semester **EC18016-MACHINE LEARNING**

(Electronics and Communication Engineering)

(Regulation 2018)

FIME: 3 HO COURSE	DURS MAX. MARKS: STATEMENT	100 rbt levei
CO 1	Distinguish between supervised and unsupervised classifiers	4
CO 2	Categorize the data and identify the patterns.	4
CO 3	Illustrate methods for automatic training of classification systems	2
CO 4	Examine classification problems probabilistically and estimate classifier performance	4
CO 5	Use the principles of Bayesian parameter estimation and apply them in relatively simple	3
	probabilistic models	

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	RBT
			LEVEL
1.	Examine the parametric estimation method.	1	4
2.	Distinguish between supervised and unsupervised learning.	1	3
3.	Organize how to tackle over fitting and under fitting?	2	4
4.	Develop the F1 score? How would you use it?	2	3
5.	Why dimensionality reduction is useful?	3	2
6.	What is the first principal component of a data? How one can compute it?	3	2
7.	Analyze General Expectation-Maximisation (EM) Algorithm.	4	4
8.	Compare and contrast the gradient descent and Delta rule.	4	4
9.	Differentiate Deep learning and Machine Learning.	5	4
10.	Describe Markov Chains.	5	2

$\mathbf{D} \mathbf{A} \mathbf{D} \mathbf{T} = \mathbf{D} \left(\mathbf{5} + \mathbf{1} \mathbf{4} - \mathbf{70} \mathbf{M}_{\text{order}} \right)$

- Describe ab 11. (a) (i) algorithmic
 - (ii) Derive proba
 - Obtain the uni-var **(b)**

12. (a) Does the patient h result comes back 98% of the case negative result in Furthermore, 0.00 1. What is the pro 2. What is the pro 3. What is the dia

(b) Apply K nearest given features BN

	PA	ART-B(5 X	14 = 70 Mar	KS)			
					Marks	CO	RBT LEVE L
pout the basic statistic properties used in Machine learning perspective.				(7)	1	3	
ab	ility density	function of (Gaussian dist DR)	ribution w .	(7)	1	3
riate and multivariate normal density functions.				(14)	1	3	
hav k j ss 08 08 08 08 08	ve cancer or positive. The in which th nly 97% of of the entire ability that the ability that he nosis?	does he not? e test returns e disease is the cases in v population h is patient has e does not ha	A patient tak a correct po actually pre which the dis nave this cano s cancer? ve cancer?	tes a lab test and the sitive result in only sent, and a correct sease is not present. cer.	(14)	2	4
ne MI	ighbor classi , Age. If the	fier to predic training exar	t the diabetic nples are,	patient with the	(14)	2	4
	BMI	Age	Sugar				
	33.6	50	1				
	26.6	30	0				
	23.4	40	0				
	43.1	67	0				
	35.3	23	1				
	35.9	67	1				
	36.7	45	1				
	25.7	46	0				
	23.3	29	0				
	31	56	1				
			_	l			

Assume K=3,

Test Example BMI=43.6, Age=40, Sugar=?

13. (a) Let the probability that a bull week is followed by another bull week be 90%, a bear week be 7.5%, and a stagnant week be 2.5%. Similarly, let the probability that a bear week is followed by another bull week be 15%, bear week be 80% and a stagnant week be 5%. Finally, let the probability that a stagnant week be followed by a bull week is 25%, a bear week be 25% and a stagnant week be 50%. Obtain the transition probabilities and probabilities for future states of a discrete Markov process.

2

3 (14)

2

Q. Code:707993

(b) Clu		ster the following eight points (with (x, y) representing locations) into	(14)		3	2
	three $\Delta 1($	e clusters: 2 10) $\Delta 2(2 5) \Delta 3(8 4) \Delta 4(5 8) \Delta 5(7 5) \Delta 6(6 4) \Delta 7(1 2) \Delta 8(4 9)$	1			
	Initi	al cluster centers are: A1(2, 10), A4(5, 8) and A7(1, 2).				
	The defin	distance function between two points $a = (x1, y1)$ and $b = (x2, y2)$ is ned as-	ŀ			
	P(a,	b) = $ x^2 - x^1 + y^2 - y^1 $				
14. (a)	Asso char	ess for which problems ANN learning is well suited and write down the racteristics.	: (14)		4	4
		(OR)				
(b)	(i)	Examine Perceptron with a neat diagram.	(4)		4	4
	(ii)	Describe about perceptron with an example and draw the decision surface represented by a two-input perceptron.	(10)		4	4
15. (a)	Des	cribe in detail about the Hidden Markov Models.(HMM) also generate the	: (14)		5	3
	Forv	ward, Viterbi and Baum Welch Algorithm.				
(OR)						
(b)	(i)	Illustrate two graphical models and show the various relationships between the nodes.	(10)		5	3
	(ii)	Explain about conditional table.	(4)		5	3
		PART- C (1 x 10 = 10 Marks)				
		(Q.No.16 is compulsory)				
			Marks	CO	R	BT VFI
16.	Consi	der the two-dimensional patterns (2, 1), (3, 5), (4, 3), (5, 6), (6, 7), (7,	(10)	3	LĽ	3

8). Compute the principal component using PCA Algorithm.

Q. Code:707993