Q. Code: 839070

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023

Third Semester

EC18302 – ELECTROMAGNETIC FIELDS AND WAVES

(Electronics and Communication Engineering)

(Regulation 2018/2018A)

TIME: 3 HOURS

MAX. MARKS: 100

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Apply different coordinate systems and vector calculus for understanding different concepts in electromagnetic Engineering.	3
CO 2	Evaluate the physical quantities of electromagnetic fields in different media.	4
CO 3	Design storage devices like capacitor, inductor used in electrical system and materials required to assemble energy storage devices.	5
CO 4	Justify concepts of electromagnetic waves means of transporting energy in the form of radio waves, TV signals, Radar beams.	6
CO 5	Determine the electromagnetic force exerted on charged particles, current elements, working principle of various electric and electromagnetic energy conversion devices are based on this force.	3

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Two point charges $Q_1=30uC$ and $Q_2=15uC$ are located at (-1,2,3) m and (2,1,0) m respectively. Find force on Q_1 .	1	3
2.	Give the relationship between gradient of potential and electric field.	1	2
3.	State the Amperes' Circuital Law.	2	1
4.	Write the expression for the magnetic field intensity on the axis of a rectangular loop carrying a current I.	2	2
5.	Calculate the capacitance of parallel plate capacitor if A=120cm ² ,d=5mm and relative permittivity =12.	3	3
6.	Write the expression for energy stored in inductor.	3	2
7.	Brief about the Gauss law for electric field.	4	2
8.	Examine the importance of Faraday's law of electromagnetic induction.	4	4
9.	Write expressions for instantaneous and complex poynting vector.	5	1
10.	Calculate the intrinsic impedance of free space.	5	2
	PART- B (5 x 14 = 70 Marks) Mark	s CO	O RBT LEVE

11. (a) Determine the electric field intensity of an infinitely long, straight, line charge (14) 1 3 of a uniform density ρ_L in air.

Q. Code: 839070

(OR)

(b)		e and prove Gauss's law for electrostatics. Also explain applications of	of (14	4)	1	3
	Gau	ss's law.				
12. (a)	Derive an expression for magnetic field intensity due to a linear conductors of finite and infinite length carrying current I at a distance point P. Assume R to be the distance between conductor and point P. Use Biot-Savart law. (OR)					3
(b)		ve the magnetic field intensity in the different regions of co-axial cable b ying Ampere's circuital law.	ру (14	4)	2	3
13. (a)	(i)	Derive the expressions for Poisson's and Laplace Equation.	(6	·	3	4
	(ii)	Calculate the inductance of a solenoid of 200 turns wound tightly on a cylindrical tube of 6cm diameter .The length of the tube is 60cm and the solenoid is air.	(8)	3	4
		(OR) Laplace's equation to find the capacitance per unit length of a co-axia	1 / 1	•		
(b)	Use cable V=0	`	4)	3	4	
14. (a)	Deri	ve the Maxwell's four equations in the integral and differential forms. (OR)	(14	4)	4	5
(b)					4	5
15. (a)	(i)	State and prove Poynting theorem.	(6	6)	5	3
	(ii)	Derive the wave equation for uniform plane waves. (OR)	(8	8)	5	3
(b)	(i)	Derive the relationship between Electric Field and Magnetic Field using Maxwell's Equations.	(8	8)	5	3
	(ii)	Derive the wave equations for conducting medium in phasor form.	(6	6)	5	3
		<u>PART- C (1 x 10 = 10 Marks)</u> (Q.No.16 is compulsory)				
			Marks	CO	RE LEV	
16.	Find	curl H and gradient of H, if H=2r $\cos\phi \frac{\Lambda}{a_r} - 4r \sin\phi d^{\Lambda} a_{\phi} + 3 \frac{\Lambda}{a_z}$	(10)	1	LE (
		* * * * * * * * *				