Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023
 Third Semester
 EC18302 - ELECTROMAGNETIC FIELDS AND WAVES
 (Electronics and Communication Engineering)

(Regulation 2018/2018A)
TIME: 3 HOURS

COURSE OUTCOMES	Statement	${ }_{\text {RBT }}^{\text {R }}$ (VEL
CO 1	Apply different coordinate systems and vector calculus for understanding different concepts in electromagnetic Engineering.	3
CO2	Evaluate the physical quantities of electromagnetic fields in different media.	4
CO3	Design storage devices like capacitor, inductor used in electrical system and materials required to assemble energy storage devices.	5
CO 4	Justify concepts of electromagnetic waves means of transporting energy in the form of radio waves, TV signals, Radar beams.	6
CO 5	Determine the electromagnetic force exerted on charged particles, current elements, working principle of various electric and electromagnetic energy conversion devices are based on this force.	3

PART- A (10 x $2=20$ Marks)

(Answer all Questions)
MAX. MARKS: 100

CO | RBT |
| :---: |
| LEVEL |

1. Two point charges $\mathrm{Q}_{1}=30 \mathrm{uC}$ and $\mathrm{Q}_{2}=15 \mathrm{uC}$ are located at $(-1,2,3) \mathrm{m}$ and $(2,1,0) \mathrm{m} \quad \mathbf{1} \quad \mathbf{3}$ respectively. Find force on Q_{1}.
2. Give the relationship between gradient of potential and electric field. $\mathbf{1} \quad \mathbf{2}$
3. State the Amperes' Circuital Law. $2 \quad \mathbf{1}$
4. Write the expression for the magnetic field intensity on the axis of a rectangular loop $\quad \mathbf{2} \quad \mathbf{2}$ carrying a current I.
5. Calculate the capacitance of parallel plate capacitor if $A=120 \mathrm{~cm}^{2}, \mathrm{~d}=5 \mathrm{~mm}$ and relative $\quad \mathbf{3} \quad \mathbf{3}$ permittivity $=12$.
6. Write the expression for energy stored in inductor.
7. Brief about the Gauss law for electric field.
8. Examine the importance of Faraday's law of electromagnetic induction.
9. Write expressions for instantaneous and complex poynting vector.

4
10. Calculate the intrinsic impedance of free space.

PART- B (5 x $14=70$ Marks)
11. (a) Determine the electric field intensity of an infinitely long, straight, line charge

Marks	CO	RBT LEVE
		$\mathbf{L}^{\text {L }}$
(14)	$\mathbf{1}$	$\mathbf{3}$

(b) State and prove Gauss's law for electrostatics. Also explain applications of (14) 1 Gauss's law.
12. (a) Derive an expression for magnetic field intensity due to a linear conductors of finite and infinite length carrying current I at a distance point P. Assume R to be the distance between conductor and point P. Use Biot-Savart law.

(OR)

(b) Derive the magnetic field intensity in the different regions of co-axial cable by (14) 2 applying Ampere's circuital law.
13. (a) (i) Derive the expressions for Poisson's and Laplace Equation.
(6) $3 \quad 4$
(ii) Calculate the inductance of a solenoid of 200 turns wound tightly on a cylindrical tube of 6 cm diameter. The length of the tube is 60 cm and the solenoid is air.
(OR)
(b) Use Laplace's equation to find the capacitance per unit length of a co-axial cable of inner radius ' a ' m and outer radius ' b ' m. Assume $V=V 0$ at $r=a$ and $\mathrm{V}=0$ at $\mathrm{r}=\mathrm{b}$.
14. (a) Derive the Maxwell's four equations in the integral and differential forms.
(OR)
(b) An electric field in a medium which is source free is given by $\mathrm{E}=1.5 \cos \left(10^{8} \mathrm{t}-\beta \mathrm{z}\right) \mathrm{ax} \mathrm{V} / \mathrm{m}$. Find B,H and D. Assume $\varepsilon_{\mathrm{r}}=1, \mu_{\mathrm{r}}=1$ and $\sigma=0$.
15. (a) (i) State and prove Poynting theorem.
(ii) Derive the wave equation for uniform plane waves.
(6) 5
(OR)
(b) (i) Derive the relationship between Electric Field and Magnetic Field using
Maxwell's Equations.
(ii) Derive the wave equations for conducting medium in phasor form.
(14) 4
(14) 45
(8) 5
(8) 5
(6) 53

PART- C ($1 \times 10=10$ Marks)
(Q.No. 16 is compulsory)
16.

Find curl H and gradient of H, if $H=2 r \cos \phi{ }^{\Lambda} \mathrm{a}_{\mathrm{r}}-4 \mathrm{r} \sin \phi \mathrm{d}^{\wedge} \mathrm{a}_{\phi}+3{ }^{\Lambda}{ }_{\mathrm{a}_{\mathrm{z}}}$

Marks	CO	RBT
LEVEL		
(10)	1	$\mathbf{4}$

