

Find V in the circuit shown below, if the box contains 3Ω in series with 2 mH. 3.

3

1

3

3

3

4

- A load draws 5kVAR at a power factor 0.86 (leading) from a 220-Vrms source. Calculate 2 3 4. the apparent power supplied by the load.
- Define Quality factor. 5.
- 6. A coil having an inductance of 33mH is magnetically coupled to another coil having an **3** inductance of 47mH. The coefficient of coupling between the coils is 0.6. Calculate the equivalent inductance if the two coils are connected in series aiding.
- Determine time constant (τ) for the given RL circuit. 7.

- The impedance parameters of the two-port netwo 8. forward transfer impedance = 3Ω , output driving impedance = 3Ω . Compute hybrid parameters.
- 9. Define planar and nonplanar graph.
- For the given directed graph, obtain the incidence 10. degree '2'.

Determine v_x and power absorbed by 11 Ω resiston 11. (a)

- Determine all the mesh current and the power absorbed by 1Ω resistor. **(b)**

In the given circuit, find values for I_1 , I_2 , and I_3 and represent V_s , I_1 , I_2 , and I_3 on a (14) 12. (a) phasor diagram. Also determine the angle by which I_s leads I_1 , I_2 , and I_3 .

Q. Code: 810115

ork are input driving impedance = 6Ω ,	4	3
g impedance = 6Ω and reverse transfer		
	5	1
e matrix (A) and list out the nodes with	5	3

Marks	CO	RBT
(14)	1	LEVEL 3
	Marks (14)	Marks CO (14) 1

2 3

Q. Code: 810115

2 3

3

3

(b) For the given circuit, find the complex power delivered by all the voltage sources. (14)

Determine the value(s) of C for which the circuit shown is resonant at 5000 (10) 13. (a) (i) rad/s.

(ii) A RLC series circuit consists of R=16 Ω , L=2mH and C=2 μ F. Calculate (4) 3 3 resonant frequency and Quality factor.

(OR)

For the given circuit, determine the mesh current I_1 and I_2 . 3 3 **(b)** (14)

Obtain an expression for i(t) as labeled in the circuit diagram, and determine the (14) 14. (a) 4 3 power dissipated in the 40 Ω resistor at t = 2.5 ms.

Determine the admittance parameters for the given circuit. **(b)**

For the given network, obtain the incidence matrix (A) and cut-set matrix (C). 15. (a) Also, express the branch voltages in terms of twig voltages.

(i) For the given network, determine the incidence matrix (A) and Tie-set matrix (14) **(b)** (B). Also, express branch currents in terms of loop currents.

PART- C (1 x 10 = 10 Marks)

(Q.No.16 is compulsory)

With regard to the circuit represented below, deter 16. (c) $v_{C}(0-)$; (d) $v_{C}(0+)$.

Q. Code: 810115

3

3

(14)

5 (14) 3

5

ompulsory)	Marks	CO	RBT LEVEL
ermine (a) $i_L(0-)$; (b) $i_R(0-)$;	(10)	4	3