MAX. MARKS: 100

Reg. No.							
							l

B.E. / **B.TECH. DEGREE EXAMINATIONS, MAY 2023**

Third Semester

EC18304 - DIGITAL SYSTEM DESIGN

(Electronics and Communication Engineering)

(Regulation 2018A)

TIME: 3 HOURS

CO		nalyze different methods used for simplification of Boolean expressions.			
	CO 2 Design various combinational circuits using logic gates.				
	CO 3 Analyze and design synchronous and asynchronous sequential circuits.				
CO		esign a RAM, ROM, PAL and PLA devices.			
CO	9 W	rite simple HDL codes for digital circuits.			
		PART- A (10x2=20Marks)			
		(Answer all Questions)			DDT
				CO	RBT LEVEL
1.	Convert the $(256.48)_{10}$ in to its equivalent hexadecimal.				3
2.	Express the function $Y = A+B'C$ in canonical POS.				3
3.					3
4.	1 ,				1
5.					3
6.					3
7.	1				3
8.					3
9.					1
10.	Write	e the Verilog code for a full adder.		5	3
		PART- B (5x 14=70Marks)			
			Marks	CO	RBT LEVEL
11. (a)) (i	Minimize the following logic function using K-map and realize using	(10)	1	3
		NAND and NOR gates.			
		$F(A, B, C, D) = \sum m(1, 3, 5, 8, 9, 11, 15) + d(2,13)$			
	(ii) Implement EXOR gate using only NAND gates.	(4)	1	3
		(OR)			
(b)) M	inimize the given switching function using Quine - McCluskey method.			
	$F(A, B, C, D) = \sum m(0, 1, 2, 3, 4, 6, 8, 10, 12, 14)$ (14)				3

		Q. Code:553716			
12. (a)	Design a BCD adder and explain its working with necessary block diagram.	(14)	2	2	
	(OR)				
(b)	With neat diagram explain the working of Carry Look Ahead adder.	(14)	2	2	
13. (a)	Design and implement a synchronous decade counter. Explain its working. Draw the timing diagram.	(14)	3	4	
	(OR)				
(b)	Design a Moore type sequence detector to detect a serial input sequence of 101.	(14)	3	4	
14. (a)	Write the differences between static and dynamic RAM. Draw the circuits of one cell of each and explain its working.	(14)	4	4	
	(OR)				
(b)	Design using PAL the following Boolean functions.	(14)	4	4	
	W (A, B, C, D) = \sum (2, 12, 13)				
	$X (A, B, C, D) = \sum (7, 8, 9, 10, 11, 12, 13, 14, 15)$				
	$Y (A, B, C, D) = \sum (0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)$				
	$Z(A, B, C, D) = \sum (1, 2, 8, 12, 13)$				
15. (a)	Design an asynchronous sequential circuit that has 2 inputs x_1 and x_2 and				
	one output z. When $x_1 = 0$, output is zero. The change in x_2 that occurs		5	4	
	while x_1 is 1 will cause output $z = 1$. The output z will remain 1 until x_1				
	returns to 0. Realize the circuit using D flip-flop.				
	(OR)				
(b)	(i) Write a Verilog code for 3:8 decoder.	(7)	5	4	
	(ii) Write a Verilog code for 8:1 Multiplexer.	(7)	5	4	

PART- C (1x 10=10Marks)

(Q.No.16 is compulsory)

Marks CO RBT LEVEL

16. Construct a BCD to Excess-3 code convertor using minimum number of (10) 2 5 NAND gates.
