Reg. No. \square

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023

Third Semester
 EC18304 - DIGITAL SYSTEM DESIGN
 (Electronics and Communication Engineering)

(Regulation 2018A)

TIME: 3 HOURS

MAX. MARKS: 100
CO 1 Analyze different methods used for simplification of Boolean expressions.
CO 2 Design various combinational circuits using logic gates.
CO 3 Analyze and design synchronous and asynchronous sequential circuits.
CO 4 Design a RAM, ROM, PAL and PLA devices.
CO 5 Write simple HDL codes for digital circuits.

PART- A (10x2=20Marks)
 (Answer all Questions)

1. Convert the $(256.48)_{10}$ in to its equivalent hexadecimal.
CO $\underset{\text { LEVEL }}{\text { RBT }}$
2. Express the function $\mathrm{Y}=\mathrm{A}+\mathrm{B}^{\prime} \mathrm{C}$ in canonical POS.
3. Implement AND gate using only NOR gates.
4. What is priority encoder?
5. Convert D flip-flop to T flip-flop.
6. How many flip-flops are required to build a binary counter that counts from 0 to 512 ?
7. Compare and contrast the features of Mealy and Moore machines.

3
13
8. Distinguish between PAL and PLA.
9. What is state diagram? Give an example.

23
21
10. Write the Verilog code for a full adder.

3 3
3 3
43
43
$5 \quad 1$
53

			Marks	co	RBT
					Level
11. (a)	(i)	Minimize the following logic function using K-map and realize using	(10)	1	3
		NAND and NOR gates.			
		$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(1,3,5,8,9,11,15)+\mathrm{d}(2,13)$			
	(ii)	Implement EXOR gate using only NAND gates.	(4)	1	3

(OR)
(b) Minimize the given switching function using Quine - McCluskey method.

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,1,2,3,4,6,8,10,12,14)
$$

(14) 13
12. (a) Design a BCD adder and explain its working with necessary block diagram.
(OR)
(b) With neat diagram explain the working of Carry Look Ahead adder.
13. (a) Design and implement a synchronous decade counter. Explain its working. Draw the timing diagram.

(OR)

(b) Design a Moore type sequence detector to detect a serial input sequence of 101.
14. (a) Write the differences between static and dynamic RAM. Draw the circuits of one cell of each and explain its working.
(OR)
(b) Design using PAL the following Boolean functions.
$\mathrm{W}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(2,12,13)$
$\mathrm{X}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(7,8,9,10,11,12,13,14,15)$
$\mathrm{Y}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,2,3,4,5,6,7,8,10,11,15)$
$\mathrm{Z}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(1,2,8,12,13)$
15. (a) Design an asynchronous sequential circuit that has 2 inputs x_{1} and x_{2} and one output z . When $\mathrm{x}_{1}=0$, output is zero. The change in x_{2} that occurs while x_{1} is 1 will cause output $z=1$. The output z will remain 1 until x_{1} returns to 0 . Realize the circuit using D flip-flop.
(OR)
(b) (i) Write a Verilog code for 3:8 decoder.
(ii) Write a Verilog code for 8:1 Multiplexer.

PART- C (1x 10=10Marks)

(Q.No. 16 is compulsory)
(14) 4
(14) 54
$4 \quad 4$
4
x

