Q. Code: 128281

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023

Fourth Semester

EC18401 – ANALOG COMMUNICATION SYSTEMS (Regulation 2018 / 2018A)

TIME: 3 HOURS

MAX. MARKS: 100 COURSE STATEMENT RBT OUTCOMES LEVEL To introduce the relevance of this course to the existing technology through **CO1** 4 demonstrations, case studies. simulations, contributions of scientist, national/international policies with a futuristic vision along with socio-economic impact and issues. **CO 2** To introduce the concepts of various modulations and their spectral characteristics. 4 **CO3** To introduce random processes, their characteristics and significance 5 **CO 4** To understand the impact of noise on different modulations and communication systems 4 **CO** 5 To introduce some of the essential baseband signal processing techniques. 4

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	How many AM broadcast stations can be accommodated in a 100 KHz bandwidth if the	1	2
	highest frequency modulating a carrier is 5 KHz?		
2.	Draw the spectrum of vestigial sideband modulation.	1	2
3.	Justify why angle modulation is more immune to noise than amplitude modulation?	2	2
4.	Mention few applications of PLL.	2	2
5.	Differentiate between random variables and random process.	3	2
6.	Illustrate the importance of auto-correlation function in communication systems.	3	2
7.	What is capture effect?	4	2
8.	Justify why AGWN noise is preferred in noise analysis?	4	2
9.	Define aliasing effect and how to overcome it?	5	2
10.	Define sub-band coding.	5	2

PART- B (5 x 14 = 70 Marks)

		Marks	CO	RBT
				LEVEL
11. (a)	Show how a square law modulator can be able to recover the AM modulated	(14)	1	3
	signal with a neat diagram?			

(OR)

Q. Code: 128281

(b)	(i)	Determine the power content of the carrier and each of the sidebands for an AM signal having a percent modulation of 80% and total power of 250 watts.	(10)	1	3
	(ii)	Draw the message, carrier and the DSB-SC AM spectrum and also find its bandwidth.	(04)	1	3
12. (a)	With prine	n a necessary phasor diagram, explain in detail about the working ciple of Foster-Seeley discriminator method in FM demodulation.	(14)	2	3
(b)	Explain in detail, how FM wave can be generated using a non-linear device along with its applications?				3
13. (a)	(i)	Illustrate the importance of Central limit theorem.	(04)	3	3
	(ii)	Deduce an expression for a random process when it is passed through a LTI filter.	(10)	3	3
		(OR)			
(b)	(i)	State and prove the properties of Gaussian process.	(10)	3	3
	(ii)	Define auto-correlation and cross-correlation function. Show that auto- correlation and power spectral density are Fourier transform pairs.	(04)	3	3
14. (a)	Sho	w that the figure of merit of a AM receiver is equal to one.	(14)	4	3
		(OR)			
(b)	Defi of i	ne narrow band noise. Derive an expression for power spectral density nphase and quadrature phase noise.	(14)	04	3
15. (a)	(i)	Compare uniform and non uniform quantization process.	(04)	5	3
	(ii)	Show how adaptive delta modulation is superior to delta modulation. (OR)	(10)	5	3
(b)	Exp Show	lain in detail about the PCM modulation and demodulation technique. w why quantization noise is unavoidable in nature?	(14)	5	3
		$\frac{PART-C (1 x 10 = 10 Marks)}{(Q.No.16 is compulsory)}$	M. 1	60	DDT
			Marks	co	KBT LEVEL
16.	A ra rand	ndom process is defined as $x(t) = A\cos(\omega_c t + \Theta)$, where is a Θ is a uniform om variable over $(0,2\pi)$. Verify that the process is ergodic in the mean	(10)	3	5

sense and autocorrelation sense.