Reg. No. \square

B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2023

Fourth Semester

EC18402 - SIGNALS AND SYSTEMS

(Electronics and Communication Engineering)
(Regulation 2018A)

TIME: 3 HOURS

COURSE
OUTCOMES

STATEMENT

CO 1 Classify signals and systems based on their properties.
CO 2 Infer the spectral characteristics of continuous time signals by applying Fourier and Laplace transform
CO 3 Use the principles of Fourier transform and Z transform to analyze the characteristics of discrete time signals.
CO 4 Determine the response of continuous and discrete time LTI systems.

PART- B (5x 14=70Marks)

Marks CO $\begin{gathered}\text { RBT } \\ \text { LEVEL }\end{gathered}$
(14) 13
11. (a) Determine whether the given signals are power or energy or neither

$$
\begin{aligned}
\text { a) } x(t) & =e^{j\left(2 t+\left(\frac{\pi}{4}\right)\right)} \\
\text { b) } x[n] & = \begin{cases}\left(\frac{1}{2}\right)^{n} & n \geq 0 \\
(3)^{n} & n<0\end{cases}
\end{aligned}
$$

(OR)

(b) Determine whether the following systems are Static or Dynamic, Linear or (14) 13 Nonlinear, Time variant or Invariant, Causal or Non-causal.

$$
\begin{aligned}
& \text { a) } y[n]=x[n+2]+x[-n-2] \\
& \text { b) } y(t)=t x(2 t)+x(t-3)
\end{aligned}
$$

(i) Compute convolution using Fourier transform for $\boldsymbol{x}_{\mathbf{1}}(\boldsymbol{t})=\boldsymbol{e}^{-\mathbf{2 t}} \boldsymbol{u}(\boldsymbol{t})$ and $\boldsymbol{x}_{2}(\boldsymbol{t})=\boldsymbol{e}^{-6 t} \boldsymbol{u}(\boldsymbol{t})$.
(ii) Compute the energy of a signal $\mathrm{x}(\mathrm{t})$ using Parseval's theorem.
(4) 23
(b) (i) Find the Inverse Laplace transform for $\mathrm{X}(\mathrm{s})=\frac{(3 s+7)}{\left(s^{2}-2 s-3\right)}$
If (i) $\operatorname{Re}(\mathrm{s})>3$
(ii) $\operatorname{Re}(\mathrm{s})<-1$
(iii) $3>\operatorname{Re}(\mathrm{s})>-1$
(ii) Find the Laplace transform of signal $\boldsymbol{x}(\boldsymbol{t})=\boldsymbol{t} \boldsymbol{e}^{-\mathbf{2 t}} \boldsymbol{u}(\boldsymbol{t})$ using appropriate property.
13. (a) Using Fourier transform, find the impulse response and response of the system described by the equation,

$$
\begin{equation*}
\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+6 y(t)=2 x(t) ; \quad \text { if } x(t)=u(t) \tag{14}
\end{equation*}
$$

(OR)

(b) Find the convolution of the given signals using graphical method

(i) Consider an analog signal $\boldsymbol{x}(\boldsymbol{t})=\mathbf{2} \cos 2000 \pi t+5 \sin 4000 \pi t$, determine the Nyquist sampling rate and sketch the discrete time signal.
(ii) Determine the Fourier transform of the following signal.

$$
x[n]=\left(\frac{1}{2}\right)^{n-2} u[n-1]
$$

(OR)
(b) (i) Consider a signal, $x(\boldsymbol{t})=\boldsymbol{e}^{-\boldsymbol{t}} ; \mathbf{0} \leq \boldsymbol{t} \leq \mathbf{2}$, sample the signal with a (6)

3 sampling period $\mathrm{T}=0.2 \mathrm{~s}$ and sketch the discrete time signal.
(ii) Determine the inverse Z transform of the function,

$$
X(z)=\frac{3-\frac{5}{6} z^{-1}}{\left(1-\frac{1}{4} z^{-1}\right)\left(1-\frac{1}{3} z^{-1}\right)}
$$

ROC: $|z|>1 / 3 ; \quad$ ii) ROC: $|z|<1 / 4 ; \quad$ iii) ROC: $1 / 4<|z|<1 / 3$
15. (a) (i) A causal system is represented by the following difference equation,

$$
y(n)+\frac{1}{4} y(n-1)=x(n)+\frac{1}{2} x(n-1)
$$

Find the frequency response and the impulse response of the system.
(ii) Determine the convolution sum of two sequences
(6) 3

3
(b) (i) A system is represented by the following difference equation
\qquad
(i) $x(t)=3 \cos \left(4 t+\frac{\pi}{3}\right)$
(ii) $x[n]=e^{j 2 \pi n / 3}+e^{j 3 \pi n / 4}$

PART- C (1x 10=10Marks)

(Q.No. 16 is compulsory)
Marks CO RBT
16. Determine whether or not each of the following signals is periodic. If (10) $\mathbf{1}$ periodic, specify its fundamental period.
LeVEL

$$
y[n]=0.8 y[n-1]-0.12 y[n-2]+x[n]
$$

Determine (i) the system function
(ii) impulse response for the following conditions
(a) the system is stable
(b) the system is causal
(c) the system is anticausal

