CO

3

RBT

3

Reg. No.															
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2023

Fourth Semester

EC18402 – SIGNALS AND SYSTEMS

(Electronics and Communication Engineering)

(Regulation 2018A)

MAX. MARKS: 100

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Classify signals and systems based on their properties.	3
CO 2	Infer the spectral characteristics of continuous time signals by applying Fourier and Laplace transform.	4
CO 3	Use the principles of Fourier transform and Z transform to analyze the characteristics of discrete time signals.	4
CO 4	Determine the response of continuous and discrete time LTI systems.	3
CO 5	Illustrate the process of sampling and the effects of under and over sampling.	4

PART- A (10x2=20Marks)

(Answer all Questions)
(1

1.	Give the relation between unit impulse function $\delta(t)$ and unit step function $u(t)$.	1	LEVEL 2
2.	Sketch the signal, $x[n] = u[n-2] - u[n+2]$.	1	3
3.	Find the inverse Fourier transform of $X(j\Omega) = \frac{e^{-j2\Omega}}{j\Omega+2}$	2	3
4.	Determine the Laplace transform of $x[t] = t u(t-2)$ using suitable property.	2	3
5.	Check whether the system $h(t) = e^{4t} u(-t)$ is stable or not.	4	3
6.	Given $x[n] = u[-n-1]$, find $X(e^{j\omega})$.	3	3
7.	State the need for sampling.	5	2

Find the initial value x(0) of the following z domain function. 8.

TIME:3 HOURS

$$X(z) = \frac{2}{(1+z^{-1})^2(1-z^{-1})}$$

9.	Consider an LTI system with impulse response $h[n] = \delta[n - n_0]$ for an input $x[n]$,	4	3
	find the response, $Y(e^{j\omega})$.		
10.	Compare recursive and non recursive system.	4	2

PART-B (5x

Determine whether the given signals are power o 11. (a)

a)
$$x(t) = e^{j(2t + \left(\frac{\pi}{4}\right))}$$

b) $x[n] = \begin{cases} \left(\frac{1}{2}\right)^n & n \ge 0\\ (3)^n & n < 0 \end{cases}$ (OR)

Determine whether the following systems are Sta **(b)** Nonlinear, Time variant or Invariant, Causal or Ne

a)
$$y[n] = x[n+2] + x[-n-2]$$

b) $y(t) = tx(2t) + x(t-3)$

12. (a) (i) Compute convolution using Fourier transform and $x_2(t) = e^{-6t}u(t)$.

(ii) Compute the energy of a signal x(t) using Pa

(OR)

- **(b)** (i) Find the Inverse Laplace transform for X(s)
 - If (i) $\operatorname{Re}(s) > 3$ (ii) Re(s) < -1 (iii) 3 >
 - (ii) Find the Laplace transform of signal x(t) =appropriate property.
- 13. (a) Using Fourier transform, find the impulse respons system described by the equation,

$$\frac{d^2 y(t)}{dt^2} + 5 \frac{dy(t)}{dt} + 6 y(t) = 2 x(t);$$

(OR)

Find the convolution of the given signals using gr **(b)**

Q. Code: 928880

14=70Marks)			
	Marks	CO	RBT LEVEI
or energy or neither.	(14)	1	3
atic or Dynamic, Linear or on-causal.	(14)	1	3
m for $x_1(t) = e^{-2t}u(t)$	(10)	2	3
arseval's theorem.	(4)	2	3
$=\frac{(3s+7)}{(s^2-2s-3)}$	(10)	2	3
> $\operatorname{Re}(s) > -1$ $te^{-2t}u(t)$ using	(4)	2	3
se and response of the	(14)	4	3
if x(t) = u(t)			
aphical method	(14)	4	3

- PART- C (1x 10=10Marks) (Q.No.16 is c
- 16. Determine whether or not each of the following periodic, specify its fundamental period.

(i)
$$x(t) = 3\cos(4t + \frac{\pi}{3})$$

(ii) $x[n] = e^{j2\pi n/3} + e^{j3\pi n/4}$

Q. Code: 928880

compulsory)	Marks	CO	RBT LEVEL
ng signals is periodic. If	(10)	1	3