

Derive the expression of the unit step resp 12. (a) (i) under-damped system. Use standard notations. Q. Code:745558

R2

Fig 2

fferent types of controllers?		5	2
sators?		5	1
4 = 70 Marks)			
	Marks	CO	RBT LEVEL
em using Block Diagram	(10)	1	4

 $H_3(s)$

Fig 4

ntages of block diagram reduction	(4)	1	2
(OR)			
g the mechanical system shown in	(14)	1	4
etion $\frac{x(t)}{f(t)}$?			
ep response of a second order	(8)	2	3

Q. Code:745558

3

5

5

3

3

4

3 (6) 2

(14)

(14)

(7)

3

3

4

4

(ii) The unity feedback system is characterized by an open loop transfer function $\frac{K}{s(s+10)}$. Determine the gain K, so that the system will have a damping ratio of 0.5. For this value of K, determine settling time, peak overshoot and time to peak overshoot for a unit step input.

(**OR**)

For a unity feedback control system the open loop transfer function (14) 2 $G(s) = \frac{10(s+1)}{s^2 (s+2)(s+10)}$ Find **(b)** (a) The position, velocity and acceleration error constants. (b) The steady state error when the input is R(S) where $1 + 4s + \frac{s^2}{2}$

- 13. (a) Sketch Bode plot for the following transfer function and determine the system gain K for the gain cross over frequency to be 5 rad/sec.

$$G(s) = \frac{Ks^2}{(1+0.2s)(1+0.02s)}$$

(**OR**)

The open loop transfer function of a unity feedback system is given by **(b)** $G(s) = \frac{1}{s(1+s)(1+2s)}$

- Obtain the state model of the system described by the following 14. (a) (i) $\frac{Y(s)}{u(s)} = \frac{5}{s^2+6s+7}$ transfer function
 - Obtain the transfer function model for the following state space (ii) (7)

system. A=
$$\begin{bmatrix} 1 & 1 \\ -6 & -5 \end{bmatrix}$$
, B= $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, C= $\begin{bmatrix} 1 & 0 \end{bmatrix}$ D= $\begin{bmatrix} 0 \end{bmatrix}$

(OR)

The transfer function of a system is : **(b)** (i)

$$G(s)H(s) = \frac{(s+1)(s+3)}{(s+5)(s+7)(s+9)}$$

in the state space representation of the system, the minimum number

state variables (integer) necessary is _____

- (ii) A discrete time is described by y(k+2)+5y(k+1)+6y(k)=u(k), y(0)=y(1)=Determine (i) State model in canonica matrix.
- 15. (a) A unity feedback system has an open loop trans ĸ

$$\boldsymbol{G}(\boldsymbol{s}) = \frac{\kappa}{s(1+2s)}$$

Design a suitable lag compensator such that pl state error for ramp input is 0.2.

(OR)

With suitable block diagrams and equations, e **(b)** controllers employed in control systems: a) I controller, c) PID controller.

<u>PART- C (1 x 10</u> (Q.No.16 is co

16. Draw the root-locus of the unity feedback syst function is given by $G(s) = \frac{K(s+9)}{s(s^2+4s+11)}$ and calculate K. Comment on stability.

Page 3 of 4

(2)

Q. Code:745558

the difference equation	(12)	4	3
=0 ;T=1 sec,			
al form. (ii) State transition			
sfer function	(14)	5	3
hase margin is 40^{0} and steady			
hase margin is to and steady			
)			
xplain the following types of	(14)	5	3
Proportional controller, b) PI			
•			
<u>0 = 10 Marks)</u> ompulsorv)			
1 57	Marks	CO	RBT
em whose onen-loon transfer	(10)	3	LEVEL 4
	(10)	U	•
nd calculate K. Comment on			
