	Reg. No.		
	B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023		
	Fifth Semester		
	EC18501 – DIGITAL COMMUNICATION (Electronics and Communication Engineering)		
	(Regulation 2018)		
TI	ME: 3 HOURS MAX. MAI	RKS:	100
	RSE STATEMENT		RBT LEVE
CO 1	Ability to distinguish the base band transmission schemes and band pass sign schemes for any communication system	aling	2
CO 2	Determine and manipulate the spectral characteristics of band pass signaling scheme	s and	3
CO 3	their noise performance of a communication system.		1
	Develop error control county schemes for rear time appreations.		-
	PART- A (10 x 2 = 20 Marks)		
	(Answer all Questions)	CO	DDT
		CO	LEVE
1.	The probability P_k of a symbol S_k is 0.5. What is the amount of information carried by	1	3
	the symbol?		
2.	Find the average information H for 16 equally likely messages.	1	3
3.	Find the transmission rate in Hz, if 4 independent messages with the bandwidths 100 Hz.	2	3
	100 Hz, 200 Hz and 400 Hz are sampled at the Nyquist rate, and are Time Division		
	Multiplexed (TDM) and transmitted.		
4.	Find the Nyquist rate in Hz and Nyquist interval in seconds for the transmitted signal	2	3
	$x(t) = \sin(400\pi t) + \cos(2\pi 200t).$		
5.	Draw the Polar NRZ and Manchester line coding formats for the following data sequence	2	3
	1010111000.		
6.	What is equalization? Why is it needed?	2	4
7.	Why is an Eye diagram important?	2	4
8.	Draw the constellation diagram of 8-QAM.	2	2
9.	What is the constraint length of a convolutional encoder, if there are M memory elements	3	2
	in the encoder.		
10.	Find the Hamming weights of the given code words and the Hamming distance between	3	3
	them, $C_1 = 11101101$ and $C_2 = 10011100$.		

PART- B (5 x 14 = 70 Marks)

11. (a) The probability distribution of the set of symbol symbol symbol. the Shannon Fano codes for the source sy efficiency and code variance.

(**OR**)

Compute the mutual information for the given **(b)** channel. The probabilities of the source symbol 0.35, 0.4} respectively.

Derive the signal to quantization noise ratio of 12. (a) on the SNR value of the PCM transmission sy per sample.

(OR

- Explain Differential Pulse Code Modulati **(b)** necessary block diagrams. Comment on the the variance of the prediction error.
- Derive the power spectral density of NRZ Bip 13. (a) same.

(OR

What is the significance of Correlative Co **(b)** diagrams discuss about the usage of correl Encoding and Modified Duo Binary Encoding.

	Marks	СО	RBT
			LEVEL
bols {S1, S2, S3, S4, S5} in a	(14)	1	3
0.15, 0.15, 0.2, 0.4}. Determine			
ymbols. Also find the coding			

n discrete memoryless	(14)	1	3
ols $\{x_0, x_1, x_2\}$ are $\{0.25,$			

a uniform quantizer. Comment	(14)	2	3
ystem for every increase in bit			
2)			
ion and Demodulation with dependency of output SNR on	(14)	2	3
polar format and analyze the	(14)	2	4
R) oding? With necessary block lative coding in Duo Binary	(14)	2	4

14. (a) With suitable block diagrams, explain the generation and detection of (14) 2 2 coherent QPSK signal. Draw the signal space diagram.

(**OR**)

- With suitable block diagrams explain the generation and detection of BFSK (14) 2 2 **(b)** signal. Draw the signal space diagram.
- (i) Draw the convolutional encoder having a constraint length of '3' and (4) 15. (a) 3 3 code rate r = 1/2, for the given generator sequence.

 $(g_0^1, g_1^1, g_2^1) = (1, 0, 1)$ and $(g_0^2, g_1^2, g_2^2) = (1, 1, 0)$.

(ii) Using the above encoder, determine the code words using 'time domain (10) 3 3 approach' and 'transform domain approach' for the input message sequence (111010).

(**OR**)

- The parity check matrix of a (7, 4) linear block code is given by (14) 3 3 **(b)**
 - $H = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$
 - (a) Find the generator matrix (G). (3 Marks)
 - (b) List all the code vectors. (4 Marks)
 - (c) How many errors can be detected? (2 Marks)
 - (d) How many errors can be corrected? (2 Marks)
 - (e) Check if the received code (1010111) has error or not. (3 Marks)

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory)

		Marks	CO	RBT
				LEVEL
16.	Justify that the bandwidth requirement of Model Based Encoding using	(10)	2	5
	Linear Predictive Coding is remarkably less compared to the various other			
	temporal waveform coding techniques.			
