Reg. No.

10. Investigate the various areas in which Multirate Signal Processing can be employed.

2

B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2023

Fifth Semester

EC18502 - PRINCIPLES OF DIGITAL SIGNAL PROCESSING

(Electronics and Communication Engineering)

TIME: 3 HOURS

(Regulation 2018)
Determine the

MAX. MARKS: 100

Transform.

CO 2 Interpret the characteristics of FIR filters and articulate the design of finite impulse response filters for filtering undesired signals
CO 3 Observe the IIR filter characteristics and manipulate IIR filters in real time applications.
CO 4 Assess the word lenoth effect in signal processing systems.
CO 5 Manipulate multirate signal processing and observe its characteristics.

PART- A (10 x $2=20$ Marks)
(Answer all Questions)

1. The first 6 points of 8 -point DFT of a real valued sequence are points.
2. Perform Periodic convolution of two sequences $x_{1}[n]=\{1,2\}$ and $x_{2}[n]=\{3,4\}$ using $\mathbf{1} \quad \mathbf{2}$ concentric circle method.
$\begin{array}{lll}\mathbf{3} . \begin{array}{l}\text { Why is }\end{array} & \mathbf{2} \quad 4\end{array}$
$\begin{array}{lll}\text { 4. What causes Gibb's Phenomenon? } & \mathbf{2} & \mathbf{3}\end{array}$
3. Examine the limitations of Impulse invariant mapping technique. 3
4. Apply bilinear transformation to $\quad 3 \quad 3$

$$
H(s)=\frac{5}{(s+1)(s+2)}
$$

with $\mathrm{T}=1 \mathrm{~s}$ and find $\mathrm{H}(\mathrm{z})$.
7. Express the fraction (3/8) and ($-3 / 8$) in sign magnitude and 2's complement $\mathbf{4} \boldsymbol{2}$ representation.
8. How can overflow limit cycles be avoided?
43
9. Find an expression for the output $y(n)$ for the given multi rate system. $\quad \mathbf{5} \quad \mathbf{3}$

PART- B (5 x $14=70$ Marks)

[^0]11. (a) (i) Compute the output $y[n]$ of a filter whose impulse response is $h[n]=\{1,1,1\}$ and the input signal is $x[n]=\{3,-1,0,1,3,2,0,1,2,1\}$ using overlap save method.
(ii) Compute 4 - point IDFT of the sequence $X(k)=\{2,1-j, 0 \quad 1+j\}$ using (7) $\quad \mathbf{1} \quad 3$ radix-2 DIF -FFT algorithm.

(OR)

(b) Determine the DFT of a sequence $\mathrm{x}[\mathrm{n}]=\{1,1,1,1,1,1\}$ using radix-2 (14) $\mathbf{1} 3$ DIT-FFT algorithm.
12. (a) If the desired response of a low-pass filter is

$$
H_{d}(\omega)=\left\{\begin{array}{lr}
\mathrm{e}^{-\mathrm{j} 3 \omega} & |\omega| \leq 3 \pi / 4 \\
0 & 3 \pi / 4<|\omega| \leq \pi
\end{array}\right.
$$

Determine $\mathrm{H}(\omega)$ for $\mathrm{N}=7$ using Hamming window.

(OR)

(b) (i) Design a linear phase FIR low pass filter with a cut-off frequency of $(\pi / 2) \mathrm{rad} / \mathrm{sec}$ using frequency sampling technique. Take $\mathrm{N}=9$
(ii) Realize the digital system obtained in 12.b(i) using minimum number of multipliers.
13. (a) Design a Butterworth digital IIR LPF using impulse invariant transformation (14) 3 by taking $\mathrm{T}=1$ s satisfying the following specifications,

$$
\begin{gathered}
0.707 \leq\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right| \leq 1, \quad 0 \leq \omega \leq 0.3 \pi \\
\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right| \leq 0.2, \quad 0.75 \pi \leq \omega \leq \pi \\
\text { (OR) }
\end{gathered}
$$

(b) Design a Chebyshev low pass filter with specifications $\alpha_{p}=1 \mathrm{~dB}$ ripple in the passband $0 \leq \omega \leq 0.2 \pi, \alpha_{s}=15 \mathrm{~dB}$ ripple in the stopband $.3 \pi \leq \omega \leq \pi$ using bilinear transformation.
14. (a) (i) Explain the characteristics of Limit cycle oscillations with respect to the system described by the differential equation, $\mathrm{y}[\mathrm{n}]=0.875 \mathrm{y}[\mathrm{n}-1]+\mathrm{x}[\mathrm{n}]$
Determine the dead band of the filter if it is a 4-bit sign magnitude representation and $x[0]=3 / 4$ and $x[n]=0$ for $n>0$ and $y^{\prime}[n]=0$ for $n<0$.
(ii) Derive the expression for output quantization noise power.

(OR)

(b) (i) Determine the scaling factor S_{0} in adder 1 of the given digital system described by the transfer function,

$$
H(z)=\frac{0.5+0.2 z^{-1}}{1-0.624 z^{-1}}
$$

(ii) Find the effect of coefficient quantization on pole locations of the given second order IIR system when it is realized in cascade form. Assume a word length of 4-bits through truncation.

$$
\mathrm{H}(\mathrm{z})=1 /\left(1-0.9 \mathrm{z}^{-1}+0.2 z^{-2}\right)
$$

15. (a) (i) Explain the concept of interpolation of discrete time signals in detail with relevant diagrams and mathematical equations.
(ii) Explain with a neat block diagram, the sub-band coding of speech signal.

(OR)

(b) Explain with a neat diagram and mathematical equations, how the sampling rate will be reduced by a factor D.

PART-C (1 x $10=10$ Marks)
(Q.No. 16 is compulsory)
rks CO RBT
(10) 3
16. Implement the following transfer function using Direct form-I, Direct form- II, Cascade and parallel realization of the system governed by the difference equation
$\mathrm{y}[\mathrm{n}]=0.1 \mathrm{y}[\mathrm{n}-1]+0.2 \mathrm{y}[\mathrm{n}-2]+3 \mathrm{x}[\mathrm{n}]+3.6 \mathrm{x}[\mathrm{n}-1]+0.6 \mathrm{x}[\mathrm{n}-2]$

[^0]: Marks CO RBT

