B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2023

Fifth Semester

EC18504 – TRANSMISSION LINES AND WAVEGUIDES

(Electronics and Communication Engineering) (Use Smith Chart wherever necessary)

(Regulation 2018)

TIME: 3 HOURS

MAX. MARKS: 100

CO RBT

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	To give insight about Passive filters.	2
CO 2	To introduce the various types of transmission lines and to discuss the losses associated.	3
CO 3	To give thorough understanding about high frequency line, power and impedance measurements.	3
CO 4	To impart technical knowledge in impedance matching using smith chart.	3
CO 5	To impart knowledge on waveguides and cavity resonators.	3

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

			LEVEL
1.	Enumerate the merits of Composite filters.	1	2
2.	Find the characteristic impedance of a symmetrical π network if series arm impedance is	1	3
	600Ω and shunt arm impedance is 800Ω .		
3.	How cascaded T sections form a transmission line?	2	3
4.	Give the significance of Propagation factor.	2	2
5.	Find L and C of air spaced coaxial line having b/a=10 at 40 Megacycles.	3	3
6.	Justify that standing waves quantify reflections in a transmission line.	3	3
7.	What are the applications of Quarter wave line.	4	2
8.	Give the drawbacks of double stub matching over single stub matching.	4	2
9.	Discuss the significance of dominant modes for waveguides.	5	3
10.	Differentiate free space wavelength and guide wavelength.	5	3

PART- B (5 x 14 = 70 Marks)

		Marks	CO	RBT LEVEL
11. (a)	Elaborate on the filter fundamentals discussing the significance of	(14)	1	3
	characteristic impedance, attenuation and phase shift values in the design of filters.			

(b)	Design T and π sections of m-derived HPF having R _o =600 Ω ,cutoff at 4 KHz and frequency of infinite attenuation is 3.6KHz.	(14)	1	3
12. (a)	The characteristic impedance of a 805 km long line is $94 \perp -23.2 ^{\circ}\Omega$, the value of attenuation constant is 74. X 10 ⁻⁶ N and phase shift constant is 174x 10 ⁻⁶ rad/m at 5 KHz. Calculate the primary constants and the phase velocity.	(14)	2	3
	(OR)			_
(b)	Derive equations for voltage and current on transmission lines in terms of load voltage V_R and load current I_R .	(14)	2	3
13. (a)	Derive expressions of voltages and currents on a transmission line that ensures dissipationless transmission.	(14)	3	3
	(OR)	(1.4)	2	2
(b)	A generator of $1V/1KHz$ supplies power to a 100km transmission line terminated in 200 Ω resistance. The line parameters are R=10 Ω/km , L=3.8mH/km, G=1 μ σ/km ,C=0.0085 μ F/km. Calculate the input impedance,VSWR,V _{max} ,V _{min} and reflection coefficient.	(14)	3	3
14. (a)	The air-filled two-wire line has a characteristic impedance of 50ohms and is operated at a frequency 3 GHz. The load is $Z_L = 100 + j40$ ohms. What is the line impedance 2.5 cm from the load? What is the VSWR on the line?Use smith chart.	(14)	4	3
	(OR)			
(b)	Derive an expression of constant r (normalized resistance) and constant x circle (normalized reactance for a lossless transmission line.	(14)	4	3
15. (a)	Justify how a Rectangular Cavity acts as a resonator equivalent to low frequency LC resonant circuit and derive the expression resonant frequency.	(14)	5	3
(b)	(OR) Derive the field configuration, cut off frequency and velocity of propagation for TM waves in rectangular waveguide.	(14)	5	3
	<u>PART- C (1 x 10 = 10 Marks)</u>			
	(Q.No.16 is compulsory)			
		Marks	со	RBT LEVEL
16.	Use a single parallel stub tuner to match the line of normalized impedance $0.3+0.5j$ to its normalized load. Use a shorted stub and find its distance from the load, and its length, using Smith chart.	(10)	4	4
