Reg. No.

B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2023
 Fifth Semester
 EC18504 - TRANSMISSION LINES AND WAVEGUIDES

(Electronics and Communication Engineering)
(Use Smith Chart wherever necessary)

(Regulation 2018)

TIME: 3 HOURS

COURSE	Statement	RbT
CO 1	To give insight about Passive filters.	2
CO 2	To introduce the various types of transmission lines and to discuss the losses associated.	3
CO 3	To give thorough understanding about high frequency line, power and impedance measurements.	3
CO 4	To impart technical knowledge in impedance matching using smith chart.	3
CO 5	To impart knowledge on waveguides and cavity resonators.	3

PART- A ($10 \times 2=20$ Marks)

(Answer all Questions)

	(Anweral Quelo	CO	RBT
			EvEL
1.	Enumerate the merits of Composite filters.	1	2
2.	Find the characteristic impedance of a symmetrical π network if series arm impedance is 600Ω and shunt arm impedance is 800Ω.	1	3
3.	How cascaded T sections form a transmission line?	2	3
4.	Give the significance of Propagation factor.	2	2
5.	Find L and C of air spaced coaxial line having $\mathrm{b} / \mathrm{a}=10$ at 40 Megacycles.	3	3
6.	Justify that standing waves quantify reflections in a transmission line.	3	3
7.	What are the applications of Quarter wave line.	4	2
8.	Give the drawbacks of double stub matching over single stub matching.	4	2
9.	Discuss the significance of dominant modes for waveguides.	5	3
10.	Differentiate free space wavelength and guide wavelength.	5	3
	PART- B ($5 \times 14=70$ Marks)		
	Marks	CO	RBT LEVEL
11. (a)	Elaborate on the filter fundamentals discussing the significance of characteristic impedance, attenuation and phase shift values in the design of filters.	1	3

(b) Design T and π sections of m-derived HPF having $\mathrm{R}_{0}=600 \Omega$, cutoff at 4 KHz and frequency of infinite attenuation is 3.6 KHz .
12. (a) The characteristic impedance of a 805 km long line is $94\left\llcorner-23.2^{\circ} \Omega\right.$, the value of attenuation constant is $74 . \mathrm{X} 10^{-6} \mathrm{~N}$ and phase shift constant is $174 \times 10^{-6} \mathrm{rad} / \mathrm{m}$ at 5 KHz . Calculate the primary constants and the phase velocity.

(OR)

(b) Derive equations for voltage and current on transmission lines in terms of load voltage V_{R} and load current I_{R}.
13. (a) Derive expressions of voltages and currents on a transmission line that ensures dissipationless transmission.
(OR)
(b) A generator of $1 \mathrm{~V} / 1 \mathrm{KHz}$ supplies power to a 100 km transmission line terminated in 200Ω resistance. The line parameters are $R=10 \Omega / \mathrm{km}$, $\mathrm{L}=3.8 \mathrm{mH} / \mathrm{km}, \quad \mathrm{G}=1 \mu \mho / \mathrm{km}, \mathrm{C}=0.0085 \mu \mathrm{~F} / \mathrm{km}$. Calculate the input impedance, $\mathrm{VSWR}, \mathrm{V}_{\max }, \mathrm{V}_{\min }$ and reflection coefficient.
14. (a) The air-filled two-wire line has a characteristic impedance of 50 ohms and is operated at a frequency 3 GHz . The load is $\mathrm{Z}_{\mathrm{L}}=100+\mathrm{j} 40 \mathrm{ohms}$. What is the line impedance 2.5 cm from the load? What is the VSWR on the line?Use smith chart.

(OR)

(b) Derive an expression of constant r (normalized resistance) and constant x circle (normalized reactance for a lossless transmission line.
15. (a) Justify how a Rectangular Cavity acts as a resonator equivalent to low frequency LC resonant circuit and derive the expression resonant frequency.
(OR)
(b) Derive the field configuration, cut off frequency and velocity of propagation for TM waves in rectangular waveguide.

PART- C ($1 \times 10=10$ Marks)
(Q.No. 16 is compulsory)
16. Use a single parallel stub tuner to match the line of normalized impedance $0.3+0.5 \mathrm{j}$ to its normalized load. Use a shorted stub and find its distance from the load, and its length, using Smith chart.
(14) 1

3
(14) 23
(14) 23
(14) 3
(14) 3
(14) 43
(14)

4
(14) 5
(14) 5

Marks	CO	RBT LEVL (10)
4	4	

