Reg. No.													
----------	--	--	--	--	--	--	--	--	--	--	--	--	--

B.E / B.TECH. DEGREE EXAMINATION, MAY 2023

Sixth Semester

EC18602– ANTENNA THEORY AND DESIGN

(Electronics and Communication Engineering)

(Regulation 2018 / Regulation 2018A)

TIME: 3 HOURS

MAX. MARKS: 100

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Illustrate the insights of antennas and arrays	3
CO 2	Determine the radiation characteristics of different types of aperture and slot antenna.	3
CO 3	Design microstrip antennas and its analysis.	3
CO 4	Show the recent special antennas and its analysis.	2
CO5	Identify the different types of propagation mechanisms at different frequencies.	2

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		СО	RBT
			LEVEL
1.	Compare radian and Steradian.	1	2
2.	Define pattern multiplication theorem.	1	1
3.	State field equivalence principle.	2	1
4.	List out the different types of paraboloid reflectors.	2	2
5.	Classify the types of feeding structures used for Microstrip patch antennas.	3	2
6.	How do we design the rectangular microstrip patch antenna for practical applications.	3	2
7.	Illustrate the three regions of log periodic antenna.	4	2
8.	Point out the benefits of reconfigurable antenna.	4	2
9.	Why space wave propagation is called as line of sight propagation?	5	2
10.	Calculate the critical frequency for reflection at vertical incidence if the maximum value	5	3
	of electron density is $1.24 \times 10^6 \text{ cm}^{-3}$.		

PART- B (5 x 14 = 70 Marks)

		Marks	CO	RBT LEVEL
11. (a)	Derive the field components and radiation resistance of half wave dipole antenna.	(14)	1	3

(OR)

(b) The uniform linear array consists of 16 isotropic point sources with a (14) 1 3 spacing of $\lambda/4$. If the phase difference between each successive elements is -90 degree, calculate the directivity, HPBW, Beam solid angle.

12. (a)	(i)	Derive the radiated field components of field from a rectangular aperture with an illustration of Field Equivalence Principle.	(7)	2	3
	(ii)	Justify how a parabolic reflector is able to achieve high directivity.	(7)	2	3
		(OR)			
(b)	prop	ve the impedance of slot antenna and prove that it is directly ortional to the intrinsic impedance of the medium. And also uss the significant features of slot antenna.	(14)	2	3
13. (a)		gn a rectangular microstrip antenna using a substrate (RT/duroid)) with dielectric constant of 2.2, $h = 3.2mm$ so as to resonate at 5 c.	(14)	3	3
		(OR)			
(b)	-	ain the rectangular patch antenna in cavity model with necessary tions.	(14)	3	3
14. (a)	10 N	gn a log periodic dipole array with 8.5 dB gain over a frequency of AHz to 30 MHZ, from the carrel curve 8.5 dB gain corresponds to 895, $\sigma = 0.166$.	(14)	4	4
		(OR)			
(b)		idate in detail about the special antenna that combines the features arabolic reflector and microstrip array.	(14)	4	4
15. (a)		n necessary diagram explain in detail about antenna impedance and ation measurements.	(14)	5	3
		(OR)			_
(b)		cribe the Ionosphere layers and investigate how ducts can be used nicrowave propagation.	(14)	5	3

<u>PART- C (1 x 10 = 10 Marks)</u> (Q.No.16 is compulsory)

		Marks	CO	RBT LEVEL
16.	A pyramidal horn antenna having aperture dimensions of $a = 5.2$ cm and	(10)	2	5
	b = 3.8 cm is used at a frequency of 10GHz.Find its gain, directivity and			
	HPBW.			
