Q. Code:948738

Reg. No.

B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2023

Sixth Semester

EC18603– COMMUNICATION NETWORKS

(Electronics and Communication Engineering)

(Regulation 2018)

TIME: 3 HOURS

MAX. MARKS: 100

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Choose the required functionality at each layer for given application.	2
CO 2	Detect and Correct the error in the frame.	3
CO 3	Apply the knowledge of addressing scheme and various routing protocols in data communication to select optimal path.	3
CO 4	Trace the flow of information from one node to another node in the network.	3
CO 5	Develop real time applications of networks.	4

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Draw a hybrid topology with a ring backbone and two bus networks.	1	2
2.	In a network with 5 devices find the total number of cable links required for (a) mesh	1	1
	topology (b) star topology.		
3.	Differentiate Piconet and Scatternet.	2	4
4.	Find the Hamming distance for the following pairs of words.	2	3
	(a) d (000,011) (b) d (10101,11110)		
5.	Define piggybacking and its significance.	3	1
6.	List out the various transition strategies defined for the transition from IPv4 to IPv6.	3	4
7.	Differentiate TCP and UDP.	4	4
8.	"A priority queue can provide better QoS than the FIFO queue". Justify.	4	4
9.	Compare HTTP with persistent and Non-persistent Connection.	5	4
10.	Distinguish between network applications and application-layer protocol.	5	4

PART- B (5 x 14 = 70 Marks)

		Marks	CO	RBT
				LEVEL
11. (a)	Describe the ISO-OSI reference model with a neat layering diagram and list out the functionalities of each layer.	(14)	1	2

Q. Code:948738

(OR) **(b)** Describe in detail about the various categories of network topologies with a (14) 1 2 neat diagram and also describe its advantages and disadvantages. In order to transmit the message $M = 1 \ 1 \ 1 \ 0 \ 1 \ 1$ with divisor bit as 3 12. (a) (14) 2 C= 1 1 0 1 whose polynomial is given by C(x) = x3+x2+1. Formulate the message that should be transmitted using polynomial long division and predict the occurrence of errors in the receiver. (**OR**) **(b)** Design and discuss the architecture of IEEE 802.11 with neat diagram. (14) 2 3 13. (a) Analyze the classful IP address with its types and examples. (14) 3 4 (**OR**) Illustrate in detail the various error reporting and query messages of ICMP. **(b)** 3 4 (14) Explain how QoS is provided through Integrated Services and Differentiated 14. (a) (14) 4 4 Services. (**OR**) Examine the concept of congestion control in TCP. 4 **(b)** (14) 4 In RSA, given p = 107, q = 113, e = 13, and d = 3653, encrypt the message 15. (a) (14) 5 3 "THIS IS TOUGH" using 00 to 26 (A: 00 and space: 26) as the encoding scheme. Decrypt the ciphertext to find the original message. (**OR**) Explain in detail how electronic mail application is carried out in a network. **(b)** (14) 5 3 Also explain the protocols used in this application. **PART-** C (1 x 10 = 10 Marks) (Q.No.16 is compulsory) Marks CO RBT LEVEL 16. Evaluate the following with neat sketch. (10)1 5 (i) Bluetooth (5) (5)

(ii) Zigbee