Q. Code:922499

Reg. No.							

B.E / B.TECH. DEGREE EXAMINATION, MAY 2023

Seventh Semester

EC18701 – RF AND MICROWAVE ENGINEERING

(Electronics and Communication Engineering)

(Regulation 2018)

FIME: 3 HO	OURS MAX. MA	RKS: 100
COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Explain the active and passive components at microwave frequencies.	2
CO 2	Analyze the multi-port networks and transistor amplifiers at RF frequencies.	4
CO 3	Analyze microwave devices for various applications.	4
CO 4	Evaluate the microwave sources and their applications.	3
CO 5	Measure and analyze the microwave signal parameters.	3

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Define S-parameter for a two port network.	1	2
2.	Mention any four differences between low frequency circuits and high frequency microwave circuits.	1	2
3.	Draw the block diagram of generic amplifier system.	2	2
4.	Calculate the VSWR of an amplifier, if the amplifier has reflection coefficient 0.275.	2	3
5.	Write down the S-matrix of the E-plane Tee.	3	2
6.	Compare IMPATT diode and Gunn diode.	3	2
7.	Interpret the High frequency effects in vacuum tubes.	4	2
8.	Explain frequency pulling and frequency pushing in magnetrons.	4	3
9.	Describe the scales in VSWR meter.	5	2
10.	Interpret the methods used for low, medium and high power measurement.	5	3

PART- B (5 x 14 = 70 Marks)

			Marks	CO	RBT LEVEL
11. (a)	(i)	Prove that the S-Matrix for a reciprocal network is symmetric.	(7)	1	3
	(ii)	The S-parameters of a two-port network are given $S_{11} = 0.2 \perp 90^{\circ}$, $S_{22} = 0.2 \perp 90^{\circ}$, $S_{12} = 0.5 \perp 90^{\circ}$, $S_{21} = 0.5 \perp 0^{\circ}$, (i) Determine whether the network is lossy or not. (ii) Determine whether the network is reciprocal. Find the insertion loss of network.	(7)	1	3

1

(OR)

(b)	Derive Z and Y matrix for the multi-port network. Formulate the scattering matrix for n-port microwave network.	(14)	1	3
12. (a)	A microwave amplifier is characterized by its S-parameters. Derive the equations for power gain, available power gain and transducer power gain for a transistor amplifier.	(14)	2	3
	(OR)			
(b)	Evaluate the stability considerations for RF amplifier design with various stabilization methods.	(14)	2	3
13. (a)	Derive the scattering matrix for the Hybrid Tee using 'S' parameter theory. (OR)	(14)	3	3
(b)	With the help of two valley model, explain how negative resistance can be achieved in Gunn diode. Mention its applications.	(14)	3	3
14. (a)	A two cavity Klystron has the following parameters. $V_0 = 1000 \text{ V}$, $R_0 = 40 \text{ k}\Omega$, $I_0 = 25 \text{ mA}$, $f = 3 \text{ GHz}$, Gap spacing in either cavity (d) = 1 mm, Spacing between two cavities L=4 cm, Effective shunt impedance $R_{\text{th}} = 30 \text{ K}\Omega$. Calculate the input gap voltage, voltage gain and efficiency. (OR)	(14)	4	3
(b)	Illustrate with interaction region diagram the mechanism of operation of TWT amplifier, its applications and the expression for the gain of a TWT.	(14)	4	3
15. (a)	(i) Consider a Spectrum analyser used to display frequency components from 0-3 GHz selecting suitable frequency of local oscillator, demonstrate superheterodyne principle used in spectrum analyser to display these frequency components.	(7)	5	2
	(ii) Demonstrate the slotted line method of low and high VSWR measurement.	(7)	5	2
(b)	Elaborate impedance and dielectric constant measurement using necessary block diagrams.	(14)	5	2
	<u>PART- C (1 x 10 = 10 Marks)</u>			
	(Q.No.16 is compulsory)			
		Marks	CO	RBT
16.	A microwave transistor has the following S parameters at 10 GHz, with 50 Ω reference impedance. S ₁₁ =0.45 \perp 150°, S ₂₂ = 0.40 \perp -150°, S ₁₂ = 0.01 \perp 0°, S ₂₁ = 2.05 \mid 10°. The source impedance is Z ₈ = 20 Ω and load impedance is	(10)	4	LEVEL 5

 $S_{21} = 2.05 \sqcup 10^{\circ}$. The source impedance is $Z_S = 20 \Omega$ and load impedance is $Z_L = 30 \Omega$, compute the power gain, available gain and the transducer power gain.