

B.E / B.TECH. DEGREE EXAMINATION, MAY 2023

Seventh Semester

EC18702-OPTICAL COMMUNICATION AND NETWORKS

(Electronics and Communication Engineering)

Statement

(Regulation 2018)

TIME: 3 HOURS

MAX. MARKS: 100

Course Outcomes

- **CO 1** Evaluate the transmission characteristics and classify the structures of Optical fiber and types
- **CO 2** Investigate the various signal degradation factors associated with optical fiber.
- **CO 3** Evaluate the various optical sources and optical detectors and their use in the optical communication system
- **CO 4** Examine the digital transmission and its associated parameters on system performance with the optical fiber measurements and various coupling techniques
- CO 5 Enrich their knowledge on design of optical fiber networks such as SONET/SDH and optical CDMA systems

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		СО	RBT LEVEL
1.	State the necessity of cladding for an optical fiber.	1	3
2.	List down the importance of "Critical Angle" in optical fiber.	1	2
3.	The mean optical power launched into an 8 km length fiber is 120μ W, the mean optical power at the fiber output is 3μ W? Determine the overall signal attenuation in dB/km.	2	3
4.	Furnish the concept of dispersion in optical fiber.	2	2
5.	Why silicon is not preferred to fabricate LED or LASER diode?	3	3
6.	Differentiate direct and indirect band gap materials.	3	3
7.	Categorize the types of preamplifiers.	4	2
8.	What do you mean by Responsivity?	4	2
9.	State the principle of WDM network.	5	2
10.	Distinguish SONET and SDH.	5	3
	PART- B (5 x 14 = 70 Marks)		
	Маг	·ks C	O RBT

Marks CO ^{RB1}_{LEVEL}
11. (a) Using the basic Maxwell's equations for a source-free condition, (14) 1 3 derive the mode equations for the cylindrical fiber.

Q. Code:976567

(OR)

(b)	(i)	Explain the elements of an optical fiber transmission link by drawing the relevant diagram that shows how each component functions.	(8)	1	3	
	(ii)	A step index fiber has 10 μ m radius. The refractive indexes of the core & cladding are 1.47 and 1.45 respectively. Determine its normalized frequency and hence number of modes that propagate in this fiber at 1350 nm?	(6)	1	3	
12. (a)	Illus matł	trate the material and waveguide dispersion mechanisms with necessary nematical expressions.	(14)	2	4	
		(OR)				
(b)	Expl info	(14)	2	4		
13. (a)	Deri of L	ve the expression for the quantum efficiency of a double hetero structure ED.	(14)	3	4	
		(OR)				
(b)	(i)	With the relevant diagram, explain the surface emitting LED structure and emphasis its drawbacks when compared with edge emitters.	(8)	3	4	
	(ii)	Analyze the concept of fiber splicing and provide an explanation of fusion splicing with neat diagram.	(6)	3	4	
14. (a)	Con diag	struct the optical receiver operation and its performance with neat ram.	(14)	4	3	
		(OR)				
(b)	Disc deta	uss the Fiber Diameter and Refractive Index Profile measurements in il.	(14)	(14) 4 3		
15. (a)	Ded diag	uce the basic SONET frame structure and layering concept with relevant rams.	(14)	5	3	
		(OR)				
(b)	(i)	Discuss the salient feature of Solitons using appropriate diagrams.	(6)	5	3	
	(ii)	Illustrate the detailed notes on Ultra High Capacity Networks and its applications.	(8)	5	3	
		PART- C (1 x 10 = 10 Marks) (Q.No.16 is compulsory)				
		Marks	CO	I	RBT LEVEL	
16.	D co re pl	escribe the ray theory transmission behind the optical fiber (10) ommunication with a special mention about the reflection, fraction, total internal reflection, Snell's law, critical angle and hase-shift.	1		4	
