Q. Code: 247700

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2023

Eighth Semester

EE18016 – SPECIAL ELECTRICAL MACHINES

(Electrical and Electronics Engineering)

(Regulation 2018)

TIME: 3 HOURS

MAX. MARKS: 100

- **CO1** Design a stepper motor drive for an application.
- **CO 2** Learn the principle and characteristics of a synchronous reluctance motor drive.
- **CO 3** Configure a switched reluctance motor drive for an application.
- **CO 4** Understand the operation and control of a PMBLDC motor drive.
- CO5 Learn the operation and control of a permanent magnet synchronous motor drive

PART- A (10 x 2 = 20 Marks)

			CO	RBT
				LEVEL
1.	Determine the step angle of a 4 phase stepper motor with 8 stator teeth and 6 rotor	teeth.	1	3
2.	Write the excitation sequence table for a 4-phase VR stepper motor to rotate by an of 45° .	angle	1	3
3.	Differentiate synchronous motor and synchronous reluctance motor.		2	3
4.	A 3 phase, 4 pole, 50 Hz, 400 V star connected synchronous reluctance motor has a axis and quadrature axis synchronous reactances of 8 Ω and 2 Ω respectively. For a torque of 80 N-m, determine the load angle.	lirect 1 load	2	3
5.	List the advantages of sensorless operation of switched reluctance motor.		3	2
6.	Justify the reason of using SRM in washing machines.		3	3
7.	What is meant by hall effect? List any two materials used to make hall IC pallet.		4	2
8.	Draw the magnetic equivalent circuit of PMBLDC motor.		4	2
9.	Define synchronous reactance in PMSM.		5	2
10.	Distinguish PMSM from PMBLDC motor.		5	3
	PART- B (5 x 14 = 70 Marks)			
		Marks	СО	RBT LEVEL
11. (a) Identify a stepper motor in which direction of rotation is independent of polarity of stator current. Explain its construction and various modes of excitation.	(14)	1	3
	(OR)			
(b) (i) A stepper motor is under running condition. Illustrate its characteristics	(7)	1	3
	(ii) Briefly explain, various types of circuits used for fast decaying of current in the winding in stepper motor.	(7)	1	3

Q. Code: 247700						
Explain the construction based on rotor types and working principle of a motor which has no synchronous starting torque and runs up by induction action.	(14)	2	3			
(OR)						
Derive the torque equation of synchronous reluctance motor from its phasor diagram.	(14)	2	3			
List the various power controller circuits applicable to doubly salient pole motor and explain the operation of any two schemes with suitable circuit diagram.	(14)	3	2			
(OR)						
Draw and explain the general torque-speed characteristics of SRM and discuss the type of control strategy used for different regions of the curve. Sketch the typical phase current waveforms during low speed operation.	(14)	3	2			
Draw and explain the operation of electronic commutator. Also in constructional aspects compare with mechanical commutator.	(14)	4	3			

(OR)

12. (a)

(b)

13. (a)

(b)

14. (a)

		$(\circ I)$			
(b)	(i)	Sketch the structure of the controller for PMBLDC motor and explain the functions of various blocks.	(8)	4	3
	(ii)	A permanent magnet DC motor has a no load speed of 6000 rpm, when connected to 230 V supply. The armature resistance is 1.2 Ω . Compute the speed when the supply voltage is 115 V and torque is 0.5 NM. Neglect constant losses.	(6)	4	3
15. (a)	Der	ive the emf and torque equation of an ideal sine wave PM motor.	(14)	5	3
		(\mathbf{OR})			
(b)	(i)	Explain the microprocessor based control of PMSM with a neat block diagram and list out its advantages.	(8)	5	3
	(ii)	A three phase, four-pole star connected synchronous motor has 72 slots with 20 conductors per slot. The flux/pole is 0.05 Wb and the speed is 1500 rpm. Assuming the full-pitched coil, find the line and phase voltage.	(6)	5	3
		$\frac{PART-C (1 \times 10 = 10 \text{ Marks})}{(O.\text{No.16 is compulsory})}$			
			Marks	СО	RBT

16. A permanent magnet stepper motor is driven by a series of pulses of (10) 1 duration 20 ms.It has four stator poles and six rotor poles. Compute the time taken for the motor to make a complete rotation? Also, justify the reason for selection of stepper motor in computer printers.

LEVEL

4